Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Hailmann is active.

Publication


Featured researches published by Michael Hailmann.


Journal of the American Chemical Society | 2013

Metal-organic framework luminescence in the yellow gap by codoping of the homoleptic imidazolate ∞(3)[Ba(Im)2] with divalent europium.

Jens-Christoph Rybak; Michael Hailmann; Philipp R. Matthes; Alexander Zurawski; Jörn Nitsch; Andreas Steffen; Joachim G. Heck; Claus Feldmann; Stefan Götzendörfer; Jürgen Meinhardt; Gerhard Sextl; Holger Kohlmann; Stefan J. Sedlmaier; Wolfgang Schnick; Klaus Müller-Buschbaum

The rare case of a metal-triggered broad-band yellow emitter among inorganic-organic hybrid materials was achieved by in situ codoping of the novel imidazolate metal-organic framework ∞(3)[Ba(Im)2] with divalent europium. The emission maximum of this dense framework is in the center of the yellow gap of primary light-emitting diode phosphors. Up to 20% Eu2+ can be added to replace Ba2+ as connectivity centers without causing observable phase segregation. High-resolution energy-dispersive X-ray spectroscopy showed that incorporation of even 30% Eu2+ is possible on an atomic level, with 2-10% Eu2+ giving the peak quantum efficiency (QE = 0.32). The yellow emission can be triggered by two processes: direct excitation of Eu2+ and an antenna effect of the imidazolate linkers. The emission is fully europium-centered, involving 5d → 4f transitions, and depends on the imidazolate surroundings of the metal ions. The framework can be obtained by a solvent-free in situ approach starting from barium metal, europium metal, and a melt of imidazole in a redox reaction. Better homogeneity for the distribution of the luminescence centers was achieved by utilizing the hydrides BaH2 and EuH2 instead of the metals.


Angewandte Chemie | 2015

The Hexacyanodiborane(6) Dianion [B2(CN)6]2−

Jan A. P. Sprenger; Michael Hailmann; Vera Bernhardt-Pitchougina; Helge Willner; Nikolai Ignat'ev; Eduard Bernhardt; Maik Finze

Diborane(6) dianions with substituents that are bonded to boron via carbon are very reactive and therefore only a few examples are known. Diborane(6) derivatives are the simplest catenated boron compounds with an electron-precise B-B σ-bond that are of fundamental interest and of relevance for material applications. The homoleptic hexacyanodiborane(6) dianion [B2 (CN)6 ](2-) that is chemically very robust is reported. The dianion is air-stable and resistant against boiling water and anhydrous hydrogen fluoride. Its salts are thermally highly stable, for example, decomposition of (H3 O)2 [B2 (CN)6 ] starts at 200 °C. The [B2 (CN)6 ](2-) dianion is readily accessible starting from 1) B(CN)3 (2-) and an oxidant, 2) [BF(CN)3 ](-) and a reductant, or 3) by the reaction of B(CN)3 (2-) with [BHal(CN)3 ](-) (Hal=F, Br). The latter reaction was found to proceed via a triply negatively charged transition state according to an SN 2 mechanism.


Angewandte Chemie | 2016

Generation of Dicoordinate Boron(I) Units by Fragmentation of a Tetra‐Boron(I) Molecular Square

Merle Arrowsmith; Dominic Auerhammer; Rüdiger Bertermann; Holger Braunschweig; Gerhard Bringmann; Mehmet Ali Celik; Rian D. Dewhurst; Maik Finze; Matthias Grüne; Michael Hailmann; Thomas Hertle; Ivo Krummenacher

Reduction of carbene-borane adduct [(cAAC)BBr2 (CN)] (cAAC=1-(2,6-diisopropylphenyl)-3,3,5,5-tetramethylpyrrolidin-2-ylidene) cleanly yielded the tetra(cyanoborylene) species [(cAAC)B(CN)]4 presenting a 12-membered (BCN)4 ring. The analysis of the Kohn-Sham molecular orbitals showed significant borylene character of the BI atoms. [(cAAC)B(CN)]4 was found to reduce two equivalents of AgCN per boron center to yield [(cAAC)B(CN)3 ] and fragmented into two-coordinate boron(I) units upon reaction with IMeMe (1,3,4,5-tetramethylimidazol-2-ylidene) to yield the corresponding tricoordinate mixed cAAC-NHC cyanoborylene. The analogous cAAC-phosphine cyanoborylene was obtained by reduction of [(cAAC)BBr2 (CN)] in the presence of excess phosphine.


Angewandte Chemie | 2016

Unprecedented Efficient Structure Controlled Phosphorescence of Silver(I) Clusters Stabilized by Carba-closo-dodecaboranylethynyl Ligands.

Michael Hailmann; Natalia Wolf; Rebecca Renner; Thomas Schäfer; Benjamin Hupp; Andreas Steffen; Maik Finze

{Ag2 (12-C≡C-closo-1-CB11 H11 )}n and selected pyridine ligands have been used for the synthesis of photostable Ag(I) clusters that, with one exception, exhibit for Ag(I) compounds unusual room-temperature phosphorescence. Extraordinarily intense phosphorescence was observed for a distorted pentagonal bipyramidal Ag(I) 7 cluster that shows an unprecedented quantum yield of Φ=0.76 for Ag(I) clusters. The luminescence properties correlate with the structures of the central Ag(I) n motifs as shown by comparison of the emission properties of the clusters with different numbers of Ag(I) ions, different charges, and electronically different pyridine ligands.


Chemistry: A European Journal | 2013

Difunctionalized {closo‐1‐CB11} Clusters: 1‐ and 2‐Amino‐12‐ethynylcarba‐closo‐dodecaborates

Michael Hailmann; Lorena Herkert; Alexander Himmelspach; Maik Finze

Carba-closo-dodecaborate anions with two functional groups have been synthesized via a simple two-step procedure starting from monoamino-functionalized {closo-1-CB11 } clusters. Iodination at the antipodal boron atom provided access to [1-H2 N-12-I-closo-1-CB11 H10 ](-) (1 a) and [2-H2 N-12-I-closo-1-CB11 H10 ](-) (2 a), which have been transformed into the anions [1-H2 N-12-RCC-closo-1-CB11 H10 ](-) (R=H (1 b), Ph (1 c), Et3 Si (1 d)) and [2-H2 N-12-RCC-closo-1-CB11 H10 ](-) (R=H (2 b), Ph (2 c), Et3 Si (2 d)) by microwave-assisted Kumada-type cross-coupling reactions. The syntheses of the inner salts 1-Me3 N-12-RCC-closo-1-CB11 H10 (R=H (1 e), Et3 Si (1 f)) and 2-Me3 N-12-RCC-closo-1-CB11 H10 (R=H (2 e), Et3 Si (2 f)) are the first examples for a further derivatization of the new anions. All {closo-1-CB11 } clusters have been characterized by multinuclear NMR and vibrational spectroscopy as well as by mass spectrometry. The crystal structures of Cs1 a, [Et4 N]2 a, K1 b, [Et4 N]1 c, [Et4 N]2 c, 1 e, and [Et4 N][1-H2 N-2-F-12-I-closo-1-CB11 H9 ]⋅0.5 H2 O ([Et4 N]4 a⋅0.5 H2 O) have been determined. Experimental spectroscopic data and especially spectroscopic data and bond properties derived from DFT calculations provide some information on the importance of inductive and resonance-type effects for the transfer of electronic effects through the {closo-1-CB11 } cage.


Inorganic Chemistry | 2014

Carba-closo-dodecaborate Anions with Two Functional Groups: [1-R-12-HC≡C-closo-1-CB11H10]− (R = CN, NC, CO2H, C(O)NH2, NHC(O)H)

Michael Hailmann; Szymon Z. Konieczka; Alexander Himmelspach; Jochen Löblein; Guido J. Reiss; Maik Finze

Disubstituted carba-closo-dodecaborate anions with one functional group bonded to the cluster carbon atom and one ethynyl group bonded to the antipodal boron atom were synthesized from easily accessible {closo-1-CB11} clusters. [Et4N][1-NC-12-HC≡C-closo-1-CB11H10] ([Et4N]4b) was prepared starting from Cs[12-Et3SiC≡C-closo-1-CB11H11] (Cs1c) via salts of the anions [1-HO(O)C-12-HC≡C-closo-1-CB11H10](-) (2b) and [1-H2N(O)C-12-HC≡C-closo-1-CB11H10](-) (3b). In a similar reaction sequence [Et4N][1-CN-12-HC≡C-closo-1-CB11H10] ([Et4N]7b) was obtained from Cs[1-H2N-12-HC≡C-closo-1-CB11H10] (Cs5b) by formamidation to yield [Et4N][1-H(O)CHN-12-HC≡C-closo-1-CB11H10] ([Et4N]6b) and successive dehydration. In addition, the synthesis of the isonitrile [Et4N][1-CN-closo-1-CB11H11] ([Et4N]7a) is presented. The {closo-1-CB11} derivatives were characterized by multinuclear NMR as well as vibrational spectroscopy, mass spectrometry, and elemental analysis. The crystal structures of [Et4N][1-HO(O)C-12-HC≡C-closo-1-CB11H10] ([Et4N]2b), [Et4N][1-H2N(O)C-12-HC≡C-closo-1-CB11H10] ([Et4N]3b), [Et4N][1-NC-12-HC≡C-closo-1-CB11H10] ([Et4N]4b), [Et4N][1-H(O)CHN-12-HC≡C-closo-1-CB11H10] ([Et4N]6b), [Et4N][1-CN-12-HC≡C-closo-1-CB11H10] ([Et4N]7b), and K[1-H(O)CHN-closo-1-CB11H11] ([Et4N]6a) were determined. The transmission of electronic effects through the carba-closo-dodecaboron cage was studied based on (13)C NMR spectroscopic data, by results derived from density functional theory calculations, and by a comparison to the data of related benzene and bicyclo[2.2.2]octane derivatives.


Chemistry: A European Journal | 2017

Silver(I) Clusters with Carba-closo-dodecaboranylethynyl Ligands: Synthesis, Structure, and Phosphorescence

Michael Hailmann; Natalia Wolf; Rebecca Renner; Benjamin Hupp; Andreas Steffen; Maik Finze

Salts of anionic silver(I) clusters with the carba-closo-dodecaboranylethynyl ligand were obtained from {Ag2 (12-C≡C-closo-1-CB11 H11 )}n , selected pyridines, and [Et4 N]Cl or [Ph4 P]Br. Salts of octahedral silver(I) clusters [Et4 N]2 [Ag6 (12-C≡C-closo-1-CB11 H11 )4 (4-X-C5 H5 N)x ] were formed with pyridine (X=H, x=8), 4-methylpyridine (X=Me, x=8), and 4-cyanopyridine (X=CN, x=10). In contrast, 3,5-lutidine (3,5-Me2 Py) did not result in salts of dianionic clusters, even in the presence of excess of [Et4 N]Cl or [Ph4 P]Br; instead salts of monoanionic AgI7 clusters, [Et4 N][Ag7 (12-C≡C-closo-1-CB11 H11 )4 (3,5-Me2 Py)9 ] and [Ph4 P][Ag7 (12-C≡C-closo-1-CB11 H11 )4 (3,5-Me2 Py)13 ] were obtained. The AgI7 cluster is pentagonal bipyramidal in the former, but is an edge-capped octahedron in the latter. The 4-methylpyridine and 3,5-lutidine complexes show green phosphorescence at room temperature. Although argentophilic interactions give rise to sufficient spin-orbit coupling for intersystem crossing S1 →Tn and moderate-to-high radiative rate constants, time-resolved measurements indicate that the quantum yields are greatly influenced by the pyridine ligands, which mainly determine the non-radiative rate constants. In addition, the crystal structures of [Ag16 (12-C≡C-closo-1-CB11 H11 )8 (Py)9.25 (CH3 CN)2 (CH2 Cl2 )0.75 ]⋅CH2 Cl2 , [Ag8 (12-C≡C-closo-1-CB11 H11 )4 (Py)12 ], [Ag10 (12-C≡C-closo-1-CB11 H11 )4 (4-MePy)10 Br2 ], [Ag7 (12-C≡C-closo-1-CB11 H11 )3 (4-tBuPy)11 Cl]⋅(4-tBuPy), and [Ag9 (12-C≡C-closo-1-CB11 H11 )4 (3,5-Me2 Py)11 Cl] were elucidated.


Angewandte Chemie | 2016

Erzeugung zweifach koordinierter Bor(I)‐Einheiten durch Fragmentierung eines molekularen Tetra‐Bor(I)‐Quadrats

Merle Arrowsmith; Dominic Auerhammer; Rüdiger Bertermann; Holger Braunschweig; Gerhard Bringmann; Mehmet Ali Celik; Rian D. Dewhurst; Maik Finze; Matthias Grüne; Michael Hailmann; Thomas Hertle; Ivo Krummenacher


European Journal of Inorganic Chemistry | 2013

Synthesis, Characterization, and Selected Properties of 7- and 12-Ammoniocarba-closo-dodecaboranes

Szymon Z. Konieczka; Alexander Himmelspach; Michael Hailmann; Maik Finze


Angewandte Chemie | 2016

Ungewöhnlich effiziente strukturdirigierte Phosphoreszenz in Silber(I)-Clustern, realisiert mit Carba-closo-dodecaboranylethinyl-Liganden

Michael Hailmann; Natalia Wolf; Rebecca Renner; Thomas Schäfer; Benjamin Hupp; Andreas Steffen; Maik Finze

Collaboration


Dive into the Michael Hailmann's collaboration.

Top Co-Authors

Avatar

Maik Finze

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Natalia Wolf

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin Hupp

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Dominic Auerhammer

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ivo Krummenacher

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Rebecca Renner

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Rüdiger Bertermann

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Szymon Z. Konieczka

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge