Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Hävecker is active.

Publication


Featured researches published by Michael Hävecker.


Science | 2012

The Active Site of Methanol Synthesis over Cu/ZnO/Al2O3 Industrial Catalysts

Malte Behrens; Felix Studt; Igor Kasatkin; Stefanie Kühl; Michael Hävecker; Frank Abild-Pedersen; Stefan Zander; Frank Girgsdies; Patrick Kurr; Benjamin-Louis Kniep; Michael Tovar; Richard W. Fischer; Jens K. Nørskov; Robert Schlögl

Mechanisms in Methanol Catalysis The industrial production of methanol from hydrogen and carbon monoxide depends on the use of copper and zinc oxide nanoparticles on alumina oxide supports. This catalyst is “structure sensitive”; its activity can vary by orders of magnitude, depending on how it is prepared. Behrens et al. (p. 893, published online 19 April; see the Perspective by Greeley) used a combination of bulk and surface-sensitive analysis and imaging methods—along with insights from density functional theory calculations—to study several catalysts, including the one similar to that used industrially. High activity depended on the presence of steps on the copper nanoparticles stabilized by defects such as stacking faults. Partial coverage of the copper nanoparticles with zinc oxide was critical for stabilizing surface intermediates such as HCO and lowering energetic barriers to the methanol product. Catalysis is favored by stepped copper nanoparticles decorated with zinc oxide, which promotes stronger intermediate binding. One of the main stumbling blocks in developing rational design strategies for heterogeneous catalysis is that the complexity of the catalysts impairs efforts to characterize their active sites. We show how to identify the crucial atomic structure motif for the industrial Cu/ZnO/Al2O3 methanol synthesis catalyst by using a combination of experimental evidence from bulk, surface-sensitive, and imaging methods collected on real high-performance catalytic systems in combination with density functional theory calculations. The active site consists of Cu steps decorated with Zn atoms, all stabilized by a series of well-defined bulk defects and surface species that need to be present jointly for the system to work.


Science | 2008

The Roles of Subsurface Carbon and Hydrogen in Palladium-Catalyzed Alkyne Hydrogenation

Detre Teschner; Janos Borsodi; Attila Wootsch; Zsolt Révay; Michael Hävecker; Axel Knop-Gericke; S. David Jackson; Robert Schlögl

Alkynes can be selectively hydrogenated into alkenes on solid palladium catalysts. This process requires a strong modification of the near-surface region of palladium, in which carbon (from fragmented feed molecules) occupies interstitial lattice sites. In situ x-ray photoelectron spectroscopic measurements under reaction conditions indicated that much less carbon was dissolved in palladium during unselective, total hydrogenation. Additional studies of hydrogen content using in situ prompt gamma activation analysis, which allowed us to follow the hydrogen content of palladium during catalysis, indicated that unselective hydrogenation proceeds on hydrogen-saturated β-hydride, whereas selective hydrogenation was only possible after decoupling bulk properties from the surface events. Thus, the population of subsurface sites of palladium, by either hydrogen or carbon, governs the hydrogenation events on the surface.


Journal of the American Chemical Society | 2010

Tuning the acid/base properties of nanocarbons by functionalization via amination

Rosa Arrigo; Michael Hävecker; Sabine Wrabetz; Raoul Blume; Martin Lerch; James McGregor; Edward P. J. Parrott; J. Axel Zeitler; Lynn F. Gladden; Axel Knop-Gericke; Robert Schlögl; Dang Sheng Su

The surface chemical properties and the electronic properties of vapor grown carbon nanofibers (VGCNFs) have been modified by treatment of the oxidized CNFs with NH(3). The effect of treatment temperature on the types of nitrogen functionalities introduced was evaluated by synchrotron based X-ray photoelectron spectroscopy (XPS), while the impact of the preparation methods on the surface acid-base properties was investigated by potentiometric titration, microcalorimetry, and zeta potential measurements. The impact of the N-functionalization on the electronic properties was measured by THz-Time Domain spectroscopy. The samples functionalized via amination are characterized by the coexistence of acidic and basic O and N sites. The population of O and N species is temperature dependent. In particular, at 873 K nitrogen is stabilized in substitutional positions within the graphitic structure, as heterocyclic-like moieties. The surface presents heterogeneously distributed and energetically different basic sites. A small amount of strong basic sites gives rise to a differential heat of CO(2) adsorption of 150 kJ mol(-1). However, when functionalization is carried out at 473 K, nitrogen moieties with basic character are introduced and the maximum heat of adsorption is significantly lower, at approximately 90 kJ mol(-1). In the latter sample, energetically different basic sites coexist with acidic oxygen groups introduced during the oxidative step. Under these conditions, a bifunctional acidic and basic surface is obtained with high hydrophilic character. N-functionalization carried out at higher temperature changes the electronic properties of the CNFs as evaluated by THz-TDS. The functionalization procedure presented in this work allows high versatility and flexibility in tailoring the surface chemistry of nanocarbon material to specific needs. This work shows the potential of the N-containing nanocarbon materials obtained via amination in catalysis as well as electronic device materials.


Chemical Communications | 2008

Dynamic surface rearrangement and thermal stability of nitrogen functional groups on carbon nanotubes

Rosa Arrigo; Michael Hävecker; Robert Schlögl; Dang Sheng Su

Dynamic surface rearrangement and thermal stability of N-functional groups on carbon nanotubes (CNTs), obtained by functionalization of pristine CNTs with NH(3), were studied by temperature-programmed XPS and MS: a link between the stability of the functional group and decomposition temperature have been established and a conversion into graphitic nitrogen was observed.


Chemical Society Reviews | 2013

Investigation of solid/vapor interfaces using ambient pressure X-ray photoelectron spectroscopy

David E. Starr; Zhi Liu; Michael Hävecker; Axel Knop-Gericke; Hendrik Bluhm

Heterogeneous chemical reactions at vapor/solid interfaces play an important role in many processes in the environment and technology. Ambient pressure X-ray photoelectron spectroscopy (APXPS) is a valuable tool to investigate the elemental composition and chemical specificity of surfaces and adsorbates on the molecular scale at pressures of up to 130 mbar. In this review we summarize the historical development of APXPS since its introduction over forty years ago, discuss different approaches to minimize scattering of electrons by gas molecules, and give a comprehensive overview about the experimental systems (vapor/solid interfaces) that have been studied so far. We also present several examples for the application of APXPS to environmental science, heterogeneous catalysis, and electrochemistry.


Angewandte Chemie | 2008

Understanding Palladium Hydrogenation Catalysts: When the Nature of the Reactive Molecule Controls the Nature of the Catalyst Active Phase

Detre Teschner; Zsolt Révay; Janos Borsodi; Michael Hävecker; Axel Knop-Gericke; Robert Schlögl; David Milroy; S. David Jackson; Daniel Torres; Philippe Sautet

Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany, Institute of Isotopes, Hungarian Academy of Sciences, Post Office Box 77, Budapest H-1525, Hungary WestCHEM, Department of Chemistry, University of Glasgow, Glasgow G128 QQ, Scotland, UK Universite de Lyon, Institut de Chimie, Laboratoire de Chimie, Ecole Normale Superieure de Lyon and CNRS 46 Allee d’Italie, 69364 Lyon, Cedex 07 (France)


Chemcatchem | 2012

Nanostructured Manganese Oxide Supported on Carbon Nanotubes for Electrocatalytic Water Splitting

Katharina Mette; Arno Bergmann; Jean-Philippe Tessonnier; Michael Hävecker; Lide Yao; Thorsten Ressler; Robert Schlögl; Peter Strasser; Malte Behrens

Incipient wetness impregnation and a novel deposition symproportionation precipitation were used for the preparation of MnOx/CNT electrocatalysts for efficient water splitting. Nanostructured manganese oxides have been dispersed on commercial carbon nanotubes as a result of both preparation methods. A strong influence of the preparation history on the electrocatalytic performance was observed. The as‐prepared state of a 6.5 wt. % MnOx/CNT sample could be comprehensively characterized by comparison to an unsupported MnOx reference sample. Various characterization techniques revealed distinct differences in the oxidation state of the Mn centers in the as‐prepared samples as a result of the two different preparation methods. As expected, the oxidation state is higher and near +4 for the symproportionated MnOx compared to the impregnated sample, where +2 was found. In both cases an easy adjustability of the oxidation state of Mn by post‐treatment of the catalysts was observed as a function of oxygen partial pressure and temperature. Similar adjustments of the oxidation state are also expected to happen under water splitting conditions. In particular, the 5 wt. % MnO/CNT sample obtained by conventional impregnation was identified as a promising catalytic anode material for water electrolysis at neutral pH showing high activity and stability. Importantly, this catalytic material is comparable to state‐of‐art MnOx catalyst operating in strongly alkaline solutions and, therefore, offers advantages for hydrogen production from waste and sea water under neutral, hence, environmentally benign conditions.


ACS Nano | 2011

Nontrivial Redox Behavior of Nanosized Cobalt: New Insights from Ambient Pressure X-ray Photoelectron and Absorption Spectroscopies

Vasiliki Papaefthimiou; Thierry Dintzer; V. Dupuis; Alexandre Tamion; Florent Tournus; Arnaud Hillion; Detre Teschner; Michael Hävecker; Axel Knop-Gericke; Robert Schlögl; Spyridon Zafeiratos

The reduction and oxidation of carbon-supported cobalt nanoparticles (3.50±0.22 nm) and a Co (0001) single crystal was investigated by ambient pressure X-ray photoelectron (APPES) and X-ray absorption (XAS) spectroscopies, applied in situ under 0.2 mbar hydrogen or oxygen atmospheres and at temperatures up to 620 K. It was found that cobalt nanoparticles are readily oxidized to a distinct CoO phase, which is significantly more stable to further oxidation or reduction compared to the thick oxide films formed on the Co(0001) crystal. The nontrivial size-dependence of redox behavior is followed by a difference in the electronic structure as suggested by theoretical simulations of the Co L-edge absorption spectra. In particular, contrary to the stable rocksalt and spinel phases that exist in the bulk oxides, cobalt nanoparticles contain a significant portion of metastable wurtzite-type CoO.


Physical Chemistry Chemical Physics | 2013

First principles calculations of the structure and V L-edge X-ray absorption spectra of V2O5 using local pair natural orbital coupled cluster theory and spin-orbit coupled configuration interaction approaches

Dimitrios Maganas; Michael Roemelt; Michael Hävecker; Annette Trunschke; Axel Knop-Gericke; Robert Schlögl; Frank Neese

A detailed study of the electronic and geometric structure of V2O5 and its X-ray spectroscopic properties is presented. Cluster models of increasing size were constructed in order to represent the surface and the bulk environment of V2O5. The models were terminated with hydrogen atoms at the edges or embedded in a Madelung field. The structure and interlayer binding energies were studied with dispersion-corrected local, hybrid and double hybrid density functional theory as well as the local pair natural orbital coupled cluster method (LPNO-CCSD). Convergence of the results with respect to cluster size was achieved by extending the model to up to 20 vanadium centers. The O K-edge and the V L2,3-edge NEXAFS spectra of V2O5 were calculated on the basis of the newly developed Restricted Open shell Configuration Interaction with Singles (DFT-ROCIS) method. In this study the applicability of the method is extended to the field of solid-state catalysis. For the first time excellent agreement between theoretically predicted and experimentally measured vanadium L-edge NEXAFS spectra of V2O5 was achieved. At the same time the agreement between experimental and theoretical oxygen K-edge spectra is also excellent. Importantly, the intensity distribution between the oxygen K-edge and vanadium L-edge spectra is correctly reproduced, thus indicating that the covalency of the metal-ligand bonds is correctly described by the calculations. The origin of the spectral features is discussed in terms of the electronic structure using both quasi-atomic jj coupling and molecular LS coupling schemes. The effects of the bulk environment driven by weak interlayer interactions were also studied, demonstrating that large clusters are important in order to correctly calculate core level absorption spectra in solids.


Angewandte Chemie | 2013

How Strain Affects the Reactivity of Surface Metal Oxide Catalysts

Kazuhiko Amakawa; Lili Sun; Chunsheng Guo; Michael Hävecker; Pierre Kube; Israel E. Wachs; Soe Lwin; Anatoly I. Frenkel; Anitha Patlolla; Klaus Hermann; Robert Schlögl; Annette Trunschke

Highly dispersed molybdenum oxide supported on mesoporous silica SBA-15 has been prepared by anion exchange resulting in a series of catalysts with changing Mo densities (0.2-2.5 Mo atoms nm(-2) ). X-ray absorption, UV/Vis, Raman, and IR spectroscopy indicate that doubly anchored tetrahedral dioxo MoO4 units are the major surface species at all loadings. Higher reducibility at loadings close to the monolayer measured by temperature-programmed reduction and a steep increase in the catalytic activity observed in metathesis of propene and oxidative dehydrogenation of propane at 8 % of Mo loading are attributed to frustration of Mo oxide surface species and lateral interactions. Based on DFT calculations, NEXAFS spectra at the O-K-edge at high Mo loadings are explained by distorted MoO4 complexes. Limited availability of anchor silanol groups at high loadings forces the MoO4 groups to form more strained configurations. The occurrence of strain is linked to the increase in reactivity.

Collaboration


Dive into the Michael Hävecker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hendrik Bluhm

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge