Michael Hirmer
University of Regensburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael Hirmer.
Applied Physics Letters | 2011
Tobias Korn; Stefanie Heydrich; Michael Hirmer; Johannes Schmutzler; Christian Schüller
The band structure of MoS2 strongly depends on the number of layers, and a transition from indirect to direct-gap semiconductor has been observed recently for a single layer of MoS2. Single-layer MoS2 therefore becomes an efficient emitter of photoluminescence even at room temperature. Here, we report on scanning Raman and on temperature-dependent, as well as time-resolved photoluminescence measurements on single-layer MoS2 flakes prepared by exfoliation. We observe the emergence of two distinct photoluminescence peaks at low temperatures. The photocarrier recombination at low temperatures occurs on the few-picosecond timescale, but with increasing temperatures, a biexponential photoluminescence decay with a longer-lived component is observed.
Applied Physics Letters | 2010
Stefanie Heydrich; Michael Hirmer; C. Preis; Tobias Korn; Jonathan Eroms; Dieter Weiss; Christian Schüller
We have investigated antidot lattices, which were prepared on exfoliated graphene single layers via electron-beam lithography and ion etching, by means of scanning Raman spectroscopy. The peak positions, peak widths, and intensities of the characteristic phonon modes of the carbon lattice have been studied systematically in a series of samples. In the patterned samples, we found a systematic stiffening of the G band phonon mode, accompanied by a line narrowing, while the 2D two-phonon mode energies are found to be linearly correlated with the G mode energies. We interpret this as evidence for p-type doping of the nanostructured graphene.
Physical Review Letters | 2011
J. Karch; C. Drexler; P. Olbrich; M. Fehrenbacher; Michael Hirmer; M. M. Glazov; Sergey Tarasenko; Eougenious Ivchenko; Bastian Birkner; Jonathan Eroms; Dieter Weiss; Rositsa Yakimova; Samuel Lara-Avila; Sergey Kubatkin; Markus Ostler; Thomas Seyller; Sergey Ganichev
We observe photocurrents induced in single-layer graphene samples by illumination of the graphene edges with circularly polarized terahertz radiation at normal incidence. The photocurrent flows along the sample edges and forms a vortex. Its winding direction reverses by switching the light helicity from left to right handed. We demonstrate that the photocurrent stems from the sample edges, which reduce the spatial symmetry and result in an asymmetric scattering of carriers driven by the radiation electric field. The developed theory based on Boltzmanns kinetic equation is in a good agreement with the experiment. We show that the edge photocurrents can be applied for determination of the conductivity type and the momentum scattering time of the charge carriers in the graphene edge vicinity.
international conference on infrared, millimeter, and terahertz waves | 2013
Sergey Ganichev; Sergey Tarasenko; P. Olbrich; J. Karch; Michael Hirmer; F. Müller; Martin Gmitra; Jaroslav Fabian; Rositza Yakimova; Samuel Lara-Avila; Sergey Kubatkin; M. S. Wang; Robert Vajtai; Pulickel M. Ajayan; Junichiro Kono; C. Drexler
A periodically driven system with spatial asymmetry can exhibit a directed motion facilitated by thermal or quantum fluctuations. This so-called ratchet effect has fascinating ramifications in engineering and natural sciences. Graphene is nominally a symmetric system. Driven by a periodic electric field, no directed electric current should flow. However, if the graphene has lost its spatial symmetry due to its substrate or adatoms, an electronic ratchet motion can arise. We report an experimental demonstration of such an electronic ratchet in graphene layers, proving the underlying spatial asymmetry. The orbital asymmetry of the Dirac fermions is induced by an in-plane magnetic field, whereas the periodic driving comes from terahertz radiation. The resulting magnetic quantum ratchet transforms the a.c. power into a d.c. current, extracting work from the out-of-equilibrium electrons driven by undirected periodic forces. The observation of ratchet transport in this purest possible two-dimensional system indicates that the orbital effects may appear and be substantial in other two-dimensional crystals such as boron nitride, molybdenum dichalcogenides and related heterostructures. The measurable orbital effects in the presence of an in-plane magnetic field provide strong evidence for the existence of structure inversion asymmetry in graphene.
New Journal of Physics | 2010
Tobias Korn; Michael Kugler; Michael Griesbeck; Robert Schulz; A. Wagner; Michael Hirmer; Christian Gerl; Dieter Schuh; Werner Wegscheider; Christian Schüller
For the realization of scalable solid-state quantum-bit systems, spins in semiconductor quantum dots (QDs) are promising candidates. A key requirement for quantum logic operations is a sufficiently long coherence time of the spin system. Recently, hole spins in III–V-based QDs were discussed as alternatives to electron spins, since the hole spin, in contrast to the electron spin, is not affected by contact hyperfine interaction with the nuclear spins. Here, we report a breakthrough in the spin coherence times of hole ensembles, confined in the so-called natural QDs, in narrow GaAs/AlGaAs quantum wells at temperatures below 500 mK. Consistently, time-resolved Faraday rotation and resonant spin amplification techniques deliver hole-spin coherence times, which approach in the low magnetic field limit values above 70 ns. The optical initialization of the hole spin polarization, as well as the interconnected electron and hole spin dynamics in our samples, are well reproduced using a rate equation model.
Physical Review B | 2011
Michael Kugler; Kamil Korzekwa; Paweł Machnikowski; Christian Gradl; Stephan Furthmeier; Michael Griesbeck; Michael Hirmer; Dieter Schuh; Werner Wegscheider; Tilmann Kuhn; Christian Schueller; Tobias Korn
We investigate spin dynamics of resident holes in a p-modulation-doped GaAs/Al0.3Ga0.7As single quantum well. Time-resolved Faraday and Kerr rotation, as well as resonant spin amplification, are utilized in our study. We observe that nonresonant or high-power optical pumping leads to a resident hole spin polarization with opposite sign with respect to the optically oriented carriers, while low-power resonant optical pumping only leads to a resident hole spin polarization if a sufficient in-plane magnetic field is applied. The competition between two different processes of spin orientation strongly modifies the shape of resonant spin amplification traces. Calculations of the spin dynamics in the electron-hole system are in good agreement with the experimental Kerr rotation and resonant spin amplification traces and allow us to determine the hole spin polarization within the sample after optical orientation, as well as to extract quantitative information about spin dephasing processes at various stages of the evolution.
Physical Review B | 2011
V. Lechner; L. E. Golub; F. Lomakina; Vassilij Belkov; P. Olbrich; Sebastian Stachel; Ines Caspers; Michael Griesbeck; Michael Kugler; Michael Hirmer; Tobias Korn; Christian Schueller; Dieter Schuh; Werner Wegscheider; Sergey Ganichev
We report on the study of the linear and circular magnetogyrotropic photogalvanic effect (MPGE) in GaAs/AlGaAs quantum well structures. Using the fact that in such structures the Lande factor g* depends on the quantum well (QW) width and has different signs for narrow and wide QWs, we succeeded to separate spin and orbital contributions to both MPGEs. Our experiments show that, for most QW widths, the MPGEs are mainly driven by spin-related mechanisms, which results in a photocurrent proportional to the g* factor. In structures with a vanishingly small g* factor, however, linear and circular MPGE are also detected, proving the existence of orbital mechanisms.
Proceedings of SPIE | 2012
Gerd Plechinger; Stefanie Heydrich; Michael Hirmer; F.-X. Schrettenbrunner; Dieter Weiss; Jonathan Eroms; Christian Schüller; Tobias Korn
The dichalcogenide MoS2, which is an indirect-gap semiconductor in its bulk form, was recently shown to become an efficient emitter of photoluminescence as it is thinned to a single layer, indicating a transition to a direct-gap semiconductor due to confinement effects. With its layered structure of weakly coupled, covalently bonded twodimensional sheets, it can be prepared, just as graphene, using mechanical exfoliation techniques. With these techniques, few- and single-layer flakes can be prepared. Raman spectroscopy is a sensitive tool to determine the number of layers of a flake, as two characteristic Raman modes in MoS2 shift to higher or lower frequency with the number of layers. In addition to previously reported Raman modes in MoS2, we observe an interlayer shear mode at very low frequencies, which also shifts with the number of layers. We use scanning Raman spectroscopy to map and characterize MoS2 flakes.
Physical Review B | 2013
Kamil Korzekwa; Christian Gradl; Michael Kugler; Stephan Furthmeier; Michael Griesbeck; Michael Hirmer; Dieter Schuh; Werner Wegscheider; Tilmann Kuhn; Christian Schueller; Tobias Korn; Paweł Machnikowski
We develop a theoretical description of the spin dynamics of resident holes in a p-doped semiconductor quantum well (QW) subject to a magnetic field slightly tilted from the Voigt geometry. We find the expressions for the signals measured in time-resolved Faraday rotation (TRFR) and resonant spin amplification (RSA) experiments and study their behavior for a range of system parameters. We find that an inversion of the RSA peaks can occur for long hole spin dephasing times and tilted magnetic fields. We verify the validity of our theoretical findings by performing a series of TRFR and RSA experiments on a p-modulation doped GaAs/Al0.3Ga0.7As single QW and showing that our model can reproduce experimentally observed signals.
Proceedings of SPIE | 2012
Tobias Korn; Michael Griesbeck; Michael Kugler; Stephan Furthmeier; Christian Gradl; Michael Hirmer; Dieter Schuh; Werner Wegscheider; Kamil Korzekwa; Paweł Machnikowski; Tilmann Kuhn; M. M. Glazov; E. Ya. Sherman; Christian Schüller
Understanding and controlling the spin dynamics in semiconductor heterostructures is a key requirement for the design of future spintronics devices. In GaAs-based heterostructures, electrons and holes have very different spin dynamics. Some control over the spin-orbit fields, which drive the electron spin dynamics, is possible by choosing the crystallographic growth axis. Here, (110)-grown structures are interesting, as the Dresselhaus spinorbit fields are oriented along the growth axis and therefore, the typically dominant Dyakonov-Perel mechanism is suppressed for spins oriented along this axis, leading to long spin depasing times. By contrast, hole spin dephasing is typically very rapid due to the strong spin-orbit interaction of the p-like valence band states. For localized holes, however, most spin dephasing mechanisms are suppressed, and long spin dephasing times may be observed. Here, we present a study of electron and hole spin dynamics in GaAs-AlGaAs-based quantum wells. We apply the resonant spin amplification (RSA) technique, which allows us to extract all relevant spin dynamics parameters, such as g factors and dephasing times with high accuracy. A comparison of the measured RSA traces with the developed theory reveals the anisotropy of the spin dephasing in the (110)-grown two-dimensional electron systems, as well as the complex interplay between electron and hole spin and carrier dynamics in the two-dimensional hole systems.