Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael I. Nishimura is active.

Publication


Featured researches published by Michael I. Nishimura.


Journal of Immunotherapy | 2001

Adoptive Transfer of Cloned Melanoma-Reactive T Lymphocytes for the Treatment of Patients with Metastatic Melanoma

Mark E. Dudley; John R. Wunderlich; Michael I. Nishimura; David C. Yu; James Chih-Hsin Yang; Suzanne L. Topalian; Douglas J. Schwartzentruber; Patrick Hwu; Francesco M. Marincola; Richard M. Sherry; Susan F. Leitman; Steven A. Rosenberg

This report describes a phase I study of the adoptive transfer of cloned melanoma antigen–specific T lymphocytes for therapy of patients with advanced melanoma. Clones were derived from peripheral blood lymphocytes or tumor-infiltrating lymphocytes of patients who had received prior immunization with the melanoma-associated antigen, gp100. In response to its cognate antigen, each clone used for treatment secreted large amounts of interferon-&ggr; and granulocyte-macrophage colony-stimulating factor, lesser amounts of interleukin (IL)-2 and tumor necrosis factor-&agr;, and little or no IL-4 and IL-10. Clones also demonstrated recognition of human leukocyte antigen–matched melanomas using cytokine secretion and lysis assays. Twelve patients received 2 cycles of cells alone; 11 patients received additional cycles of cells and were randomized between two schedules of IL-2 (125,000 IU/kg subcutaneously daily for 12 days versus 720,000 IU/kg intravenously every 8 h for 4 days). A total of 51 cycles of cells were administered, with an average of 1 × 10 10 cells per cycle. Peripheral blood samples were analyzed for persistence of transferred cells by T-cell receptor–specific polymerase chain reaction. Transferred cells reached a maximum level at 1 h after transfer but rapidly declined to undetectable levels by 2 weeks. One minor response and one mixed response were observed (both in the high-dose IL-2 arm). This report demonstrates the safety and feasibility of cloned T-cell transfer as a therapy for patients with cancer. The lack of clinical effectiveness of this protocol suggests that transfer of different or additional cell types or that modulation of the recipient host environment is required for successful therapy.


Journal of Translational Medicine | 2012

Cancer classification using the Immunoscore: a worldwide task force

Jérôme Galon; Franck Pagès; Francesco M. Marincola; Helen K. Angell; Magdalena Thurin; Alessandro Lugli; Inti Zlobec; Anne Berger; Carlo Bifulco; Gerardo Botti; Fabiana Tatangelo; Cedrik M. Britten; Sebastian Kreiter; Lotfi Chouchane; Paolo Delrio; Hartmann Arndt; Michele Maio; Giuseppe Masucci; Martin C. Mihm; Fernando Vidal-Vanaclocha; James P. Allison; Sacha Gnjatic; Leif Håkansson; Christoph Huber; Harpreet Singh-Jasuja; Christian Ottensmeier; Heinz Zwierzina; Luigi Laghi; Fabio Grizzi; Pamela S. Ohashi

Prediction of clinical outcome in cancer is usually achieved by histopathological evaluation of tissue samples obtained during surgical resection of the primary tumor. Traditional tumor staging (AJCC/UICC-TNM classification) summarizes data on tumor burden (T), presence of cancer cells in draining and regional lymph nodes (N) and evidence for metastases (M). However, it is now recognized that clinical outcome can significantly vary among patients within the same stage. The current classification provides limited prognostic information, and does not predict response to therapy. Recent literature has alluded to the importance of the host immune system in controlling tumor progression. Thus, evidence supports the notion to include immunological biomarkers, implemented as a tool for the prediction of prognosis and response to therapy. Accumulating data, collected from large cohorts of human cancers, has demonstrated the impact of immune-classification, which has a prognostic value that may add to the significance of the AJCC/UICC TNM-classification. It is therefore imperative to begin to incorporate the ‘Immunoscore’ into traditional classification, thus providing an essential prognostic and potentially predictive tool. Introduction of this parameter as a biomarker to classify cancers, as part of routine diagnostic and prognostic assessment of tumors, will facilitate clinical decision-making including rational stratification of patient treatment. Equally, the inherent complexity of quantitative immunohistochemistry, in conjunction with protocol variation across laboratories, analysis of different immune cell types, inconsistent region selection criteria, and variable ways to quantify immune infiltration, all underline the urgent requirement to reach assay harmonization. In an effort to promote the Immunoscore in routine clinical settings, an international task force was initiated. This review represents a follow-up of the announcement of this initiative, and of the J Transl Med. editorial from January 2012. Immunophenotyping of tumors may provide crucial novel prognostic information. The results of this international validation may result in the implementation of the Immunoscore as a new component for the classification of cancer, designated TNM-I (TNM-Immune).


Journal of Clinical Investigation | 2010

Tim-3 expression on PD-1+ HCV-specific human CTLs is associated with viral persistence, and its blockade restores hepatocyte-directed in vitro cytotoxicity

Rachel H. McMahan; Lucy Golden-Mason; Michael I. Nishimura; Brian J. McMahon; Michael Kemper; Todd M. Allen; David R. Gretch; Hugo R. Rosen

Having successfully developed mechanisms to evade immune clearance, hepatitis C virus (HCV) establishes persistent infection in approximately 75%-80% of patients. In these individuals, the function of HCV-specific CD8+ T cells is impaired by ligation of inhibitory receptors, the repertoire of which has expanded considerably in the past few years. We hypothesized that the coexpression of the negative regulatory receptors T cell immunoglobulin and mucin domain-containing molecule 3 (Tim-3) and programmed death 1 (PD-1) in HCV infection would identify patients at risk of developing viral persistence during and after acute HCV infection. The frequency of PD-1-Tim-3- HCV-specific CTLs greatly outnumbered PD-1+Tim-3+ CTLs in patients with acute resolving infection. Moreover, the population of PD-1+Tim-3+ T cells was enriched for within the central memory T cell subset and within the liver. Blockade of either PD-1 or Tim-3 enhanced in vitro proliferation of HCV-specific CTLs to a similar extent, whereas cytotoxicity against a hepatocyte cell line that expressed cognate HCV epitopes was increased exclusively by Tim-3 blockade. These results indicate that the coexpression of these inhibitory molecules tracks with defective T cell responses and that anatomical differences might account for lack of immune control of persistent pathogens, which suggests their manipulation may represent a rational target for novel immunotherapeutic approaches.


Journal of Immunotherapy | 1997

Cloning and Characterization of the Genes Encoding the Murine Homologues of the Human Melanoma Antigens MART1 and gp100

Yifan Zhai; James Chih-Hsin Yang; Paul J. Spiess; Michael I. Nishimura; Willem W. Overwijk; Bruce L. Roberts; Nicholas P. Restifo; Steven A. Rosenberg

The recent identification of genes encoding melanoma-associated antigens has opened new possibilities for the development of cancer vaccines designed to cause the rejection of established tumors. To develop a syngeneic animal model for evaluating antigen-specific vaccines in cancer therapy, the murine homologues of the human melanoma antigens MART1 and gp100, which were specifically recognized by tumor-infiltrating lymphocytes from patients with melanoma, were cloned and sequenced from a murine B16 melanoma cDNA library. The open reading frames of murine MART1 and gp100 encode proteins of 113- and 626-amino acids with 68.8 and 77% identity to the respective human proteins. Comparison of the DNA sequences of the murine MART1 genes, derived from normal melanocytes, the immortalized nontumorgenic melanocyte line Melan-a and the B16 melanoma, showed all to be identical. Northern and Western blot analyses confirmed that both genes encoded products that were melanocyte lineage proteins. Mice immunized with murine MART1 or gp100 using recombinant vaccinia virus failed to produce any detectable T-cell responses or protective immunity against B16 melanoma. In contrast, immunization of mice with human gp100 using recombinant adenoviruses elicited T cells specific for hgp100, but these T cells also cross reacted with B16 tumor in vitro and induced significant but weak protection against B16 challenge. Immunization with human and mouse gp100 together [adenovirus type 2 (Ad2)-hgp100 plus recombinant vaccinia virus (rVV)-mgp100], or immunization with human gp100 (Ad2-hgp100) and boosting with heterologous vector (rVV-hgp100 or rVV-mgp100) or homologous vector (Ad2-hgp100), did not significantly enhance the protective response against B16 melanoma. These results may suggest that immunization with heterologous tumor antigen, rather than self, may be more effective as an immunotherapeutic reagent in designing antigen-specific cancer vaccines.


Cancer Research | 2005

Simultaneous Generation of CD8+ and CD4+ Melanoma-Reactive T Cells by Retroviral-Mediated Transfer of a Single T-Cell Receptor

Jeffrey J. Roszkowski; Gretchen E. Lyons; W. Martin Kast; Cassian Yee; Koen van Besien; Michael I. Nishimura

Adoptive immunotherapy of cancer requires the generation of large numbers of tumor antigen-reactive T cells for transfer into cancer patients. Genes encoding tumor antigen-specific T-cell receptors can be introduced into primary human T cells by retroviral mediated gene transfer as a potential method of providing any patient with a source of autologous tumor-reactive T cells. A T-cell receptor-specific for a class I MHC (HLA-A2)-restricted epitope of the melanoma antigen tyrosinase was isolated from a CD4(+) tumor-infiltrating lymphocyte (TIL 1383I) and introduced into normal human peripheral blood lymphocytes by retroviral transduction. T-cell receptor-transduced T cells secreted various cytokines when cocultured with tyrosinase peptide-loaded antigen-presenting cells as well as melanoma cells in an HLA-A2-restricted manner, and could also lyse target cells. Furthermore, T-cell clones isolated from these cultures showed both CD8(+) and CD4(+) transduced T cells could recognize HLA-A2(+) melanoma cells, giving us the possibility of engineering class I MHC-restricted effector and T helper cells against melanoma. The ability to confer class I MHC-restricted tumor cell recognition to CD4(+) T cells makes the TIL 1383I TCR an attractive candidate for T-cell receptor gene transfer-based immunotherapy.


Pigment Cell & Melanoma Research | 2010

Reduced skin homing by functional Treg in vitiligo

Jared Klarquist; Cecele J. Denman; Claudia Hernandez; Derek J. Wainwright; Faith M. Strickland; Andreas Overbeck; Shikar Mehrotra; Michael I. Nishimura; I. Caroline Le Poole

In human vitiligo, cutaneous depigmentation involves cytotoxic activity of autoreactive T cells. It was hypothesized that depigmentation can progress in the absence of regulatory T cells (Treg). The percentage of Treg among skin infiltrating T cells was evaluated by immunoenzymatic double staining for CD3 and FoxP3, revealing drastically reduced numbers of Treg in non‐lesional, perilesional and lesional vitiligo skin. Assessment of the circulating Treg pool by FACS analysis of CD4, CD25, CD127 and FoxP3 expression, and mixed lymphocyte reactions in presence and absence of sorted Treg revealed no systemic drop in the abundance or activity of Treg in vitiligo patients. Expression of skin homing receptors CCR4, CCR5, CCR8 and CLA was comparable among circulating vitiligo and control Treg. Treg from either source were equally capable of migrating towards CCR4 ligand and skin homing chemokine CCL22, yet significantly reduced expression of CCL22 in vitiligo skin observed by immunohistochemistry may explain failure of circulating, functional Treg to home to the skin in vitiligo. The paucity of Treg in vitiligo skin is likely crucial for perpetual anti‐melanocyte reactivity in progressive disease.


PLOS ONE | 2010

Human Antigen-Specific Regulatory T Cells Generated by T Cell Receptor Gene Transfer

Todd M. Brusko; Richard C. Koya; Shirley Zhu; Michael R. Lee; Amy L. Putnam; Stephanie McClymont; Michael I. Nishimura; Shuhong Han; Lung-Ji Chang; Mark A. Atkinson; Antoni Ribas; Jeffrey A. Bluestone

Background Therapies directed at augmenting regulatory T cell (Treg) activities in vivo as a systemic treatment for autoimmune disorders and transplantation may be associated with significant off-target effects, including a generalized immunosuppression that may compromise beneficial immune responses to infections and cancer cells. Adoptive cellular therapies using purified expanded Tregs represents an attractive alternative to systemic treatments, with results from animal studies noting increased therapeutic potency of antigen-specific Tregs over polyclonal populations. However, current methodologies are limited in terms of the capacity to isolate and expand a sufficient quantity of endogenous antigen-specific Tregs for therapeutic intervention. Moreover, FOXP3+ Tregs fall largely within the CD4+ T cell subset and are thus routinely MHC class II-specific, whereas class I-specific Tregs may function optimally in vivo by facilitating direct tissue recognition. Methodology/Principal Findings To overcome these limitations, we have developed a novel means for generating large numbers of antigen-specific Tregs involving lentiviral T cell receptor (TCR) gene transfer into in vitro expanded polyclonal natural Treg populations. Tregs redirected with a high-avidity class I-specific TCR were capable of recognizing the melanoma antigen tyrosinase in the context of HLA-A*0201 and could be further enriched during the expansion process by antigen-specific reactivation with peptide loaded artificial antigen presenting cells. These in vitro expanded Tregs continued to express FOXP3 and functional TCRs, and maintained the capacity to suppress conventional T cell responses directed against tyrosinase, as well as bystander T cell responses. Using this methodology in a model tumor system, murine Tregs designed to express the tyrosinase TCR effectively blocked antigen-specific effector T cell (Teff) activity as determined by tumor cell growth and luciferase reporter-based imaging. Conclusions/Significance These results support the feasibility of class I-restricted TCR transfer as a promising strategy to redirect the functional properties of Tregs and provide for a more efficacious adoptive cell therapy.


Journal of Immunology | 2003

Cutting Edge: The NK Cell Receptor 2B4 Augments Antigen-Specific T Cell Cytotoxicity Through CD48 Ligation on Neighboring T Cells

Kyung Mi Lee; Sadhna Bhawan; Takashi Majima; Hairong Wei; Michael I. Nishimura; Hideo Yagita; Vinay Kumar

2B4 is expressed on all NK and a subset of memory/effector CD8+ T cells. 2B4 binds to CD48 and activates NK cytotoxicity, but its function on CD8+ T cells is not clear. Furthermore, two isoforms of 2B4 (2B4S and 2B4L) exist in mice but the role of individual isoforms is not known. To address these questions, we generated primary T cell cultures from Ld-specific 2C/Rag2−/− TCR transgenic mice and transduced them with 2B4S or 2B4L. 2B4S- or 2B4L-transduced T cells showed greater cytotoxicity over control cells against CD48+ and CD48− targets, suggesting that ligation of 2B4 by CD48 on target cells was not necessary for 2B4 function. Rather, 2B4/CD48 interaction on adjacent T cells appeared to be critical for cytotoxicity. Therefore, 2B4 functions as a costimulator of CD8+ T cells in MHC-restricted cytotoxicity. We conclude that 2B4/CD48 interactions among T cells themselves can augment CTL lysis of their specific targets.


Viral Immunology | 2003

Cervical cancer vaccines: recent advances in HPV research.

Gretchen L. Eiben; Diane M. Da Silva; Steven C. Fausch; I. Caroline Le Poole; Michael I. Nishimura; W. Martin Kast

Carcinomas of the anogenital tract, particularly cancer of the cervix, account for almost 12% of all cancers in women, and so represent the second most frequent gynecological malignancy in the world (48). It is well established that chronic infection of cervical epithelium by human papillomaviruses (HPV) is necessary for the development of cervical cancer. In fact, HPV DNA has been demonstrated in more than 99.7% of cervical cancer biopsy specimens, with high-risk HPV16 and HPV18 sequences being most prevalent (45,73). Therefore, an effective vaccine that would mount an immune response against HPV-related proteins might contribute to the prevention or elimination of HPV expressing lesions. This review will concentrate on the most recent advances in vaccine-mediated prevention and immunotherapy of HPV-induced cervical cancer, including presentations from the 20(th) International HPV Conference held in October 2002 in Paris.


Journal of Immunotherapy | 1993

T-Cell Recognition of Human Melanoma Antigens

Yutaka Kawakami; Michael I. Nishimura; Nicholas P. Restifo; Suzanne L. Topalian; Bert H. O'Neil; Joel Shilyansky; John R. Yannelli; Steven A. Rosenberg

The adoptive transfer of tumor-infiltrating lymphocytes (TILs) with interleukin-2 (IL-2) has antitumor activity in some patients with metastatic melanoma. We have analyzed molecular mechanisms of TIL recognition of human melanoma. Some cultured TILs specifically lysed autologous and some allogeneic melanomas sharing a variety of class I major histocompatibility complex (MHC) molecules. HLA-A2-restricted melanoma-specific TILs lysed many HLA-A2+ melanoma cell lines from different patients but failed to lyse HLA-A2- melanoma and HLA-A2+ nonmelanoma cell lines. However, these TILs were capable of lysing many naturally HLA-A2- melanomas after introduction of the HLA-A2.1 gene by vaccinia virus. These results indicate that shared melanoma antigens (Ag) are expressed in melanomas regardless of their human leukocyte antigen types. In order to identify these shared melanoma Ags, we have tested some known proteins expressed in melanoma. Expression of tyrosinase or HMB45 Ag correlated with lysis of TILs. We are also attempting to isolate antigenic peptides by high performance liquid chromatography separation and genes encoding melanoma Ag by cDNA expression cloning. The T-cell component of the antimelanoma response was also analyzed by determining the genetic structure of the T-cell receptor (TCR) used by melanoma TILs. However, we did not observe common TCR variable region usage by different melanoma TILs. We could establish melanoma cell clones and lines resistant to TIL lysis due to the absence of or defects in the expression of Ag, MHC, or beta 2-microglobulin molecules. These data indicate multiple mechanisms for melanoma escape from T-cell immunosurveillance.(ABSTRACT TRUNCATED AT 250 WORDS)

Collaboration


Dive into the Michael I. Nishimura's collaboration.

Top Co-Authors

Avatar

Shikhar Mehrotra

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Elizabeth Garrett-Mayer

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Gina Scurti

Loyola University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Steven A. Rosenberg

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mingli Li

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

David J. Cole

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Jonathan M. Eby

Loyola University Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Timothy T. Spear

Loyola University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge