Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Inouye is active.

Publication


Featured researches published by Michael Inouye.


Nature | 2010

Integrating common and rare genetic variation in diverse human populations.

David Altshuler; Richard A. Gibbs; Leena Peltonen; Emmanouil T. Dermitzakis; Stephen F. Schaffner; Fuli Yu; Penelope E. Bonnen; de Bakker Pi; Panos Deloukas; Stacey Gabriel; R. Gwilliam; Sarah Hunt; Michael Inouye; Xiaoming Jia; Aarno Palotie; Melissa Parkin; Pamela Whittaker; Kyle Chang; Alicia Hawes; Lora Lewis; Yanru Ren; David A. Wheeler; Donna M. Muzny; C. Barnes; Katayoon Darvishi; Joshua M. Korn; Kristiansson K; Cin-Ty A. Lee; McCarrol Sa; James Nemesh

Despite great progress in identifying genetic variants that influence human disease, most inherited risk remains unexplained. A more complete understanding requires genome-wide studies that fully examine less common alleles in populations with a wide range of ancestry. To inform the design and interpretation of such studies, we genotyped 1.6 million common single nucleotide polymorphisms (SNPs) in 1,184 reference individuals from 11 global populations, and sequenced ten 100-kilobase regions in 692 of these individuals. This integrated data set of common and rare alleles, called ‘HapMap 3’, includes both SNPs and copy number polymorphisms (CNPs). We characterized population-specific differences among low-frequency variants, measured the improvement in imputation accuracy afforded by the larger reference panel, especially in imputing SNPs with a minor allele frequency of ≤5%, and demonstrated the feasibility of imputing newly discovered CNPs and SNPs. This expanded public resource of genome variants in global populations supports deeper interrogation of genomic variation and its role in human disease, and serves as a step towards a high-resolution map of the landscape of human genetic variation.


Nature | 2008

The diploid genome sequence of an Asian individual

Jun Wang; Wei Wang; Ruiqiang Li; Yingrui Li; Geng Tian; Laurie Goodman; Wei Fan; Junqing Zhang; Jun Li; Juanbin Zhang; Yiran Guo; Binxiao Feng; Heng Li; Yao Lu; Xiaodong Fang; Huiqing Liang; Z. Du; Dong Li; Yiqing Zhao; Yujie Hu; Zhenzhen Yang; Hancheng Zheng; Ines Hellmann; Michael Inouye; John E. Pool; Xin Yi; Jing Zhao; Jinjie Duan; Yan Zhou; Junjie Qin

Here we present the first diploid genome sequence of an Asian individual. The genome was sequenced to 36-fold average coverage using massively parallel sequencing technology. We aligned the short reads onto the NCBI human reference genome to 99.97% coverage, and guided by the reference genome, we used uniquely mapped reads to assemble a high-quality consensus sequence for 92% of the Asian individual’s genome. We identified approximately 3 million single-nucleotide polymorphisms (SNPs) inside this region, of which 13.6% were not in the dbSNP database. Genotyping analysis showed that SNP identification had high accuracy and consistency, indicating the high sequence quality of this assembly. We also carried out heterozygote phasing and haplotype prediction against HapMap CHB and JPT haplotypes (Chinese and Japanese, respectively), sequence comparison with the two available individual genomes (J. D. Watson and J. C. Venter), and structural variation identification. These variations were considered for their potential biological impact. Our sequence data and analyses demonstrate the potential usefulness of next-generation sequencing technologies for personal genomics.


The Lancet | 2008

Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study

J.B. Richards; Fernando Rivadeneira; Michael Inouye; Tomi Pastinen; Nicole Soranzo; Scott G. Wilson; Toby Andrew; Mario Falchi; R. Gwilliam; Kourosh R. Ahmadi; Ana M. Valdes; P. Arp; Pamela Whittaker; Dominique J. Verlaan; Mila Jhamai; Vasudev Kumanduri; M. Moorhouse; J.B. van Meurs; Albert Hofman; Huibert A. P. Pols; Deborah J. Hart; Guangju Zhai; Bernet Kato; B.H. Mullin; Feng Zhang; Panos Deloukas; A.G. Uitterlinden; Tim D. Spector

Summary Background Osteoporosis is diagnosed by the measurement of bone mineral density, which is a highly heritable and multifactorial trait. We aimed to identify genetic loci that are associated with bone mineral density. Methods In this genome-wide association study, we identified the most promising of 314 075 single nucleotide polymorphisms (SNPs) in 2094 women in a UK study. We then tested these SNPs for replication in 6463 people from three other cohorts in western Europe. We also investigated allelic expression in lymphoblast cell lines. We tested the association between the replicated SNPs and osteoporotic fractures with data from two studies. Findings We identified genome-wide evidence for an association between bone mineral density and two SNPs (p<5×10−8). The SNPs were rs4355801, on chromosome 8, near to the TNFRSF11B (osteoprotegerin) gene, and rs3736228, on chromosome 11 in the LRP5 (lipoprotein-receptor-related protein) gene. A non-synonymous SNP in the LRP5 gene was associated with decreased bone mineral density (rs3736228, p=6·3×10−12 for lumbar spine and p=1·9×10−4 for femoral neck) and an increased risk of both osteoporotic fractures (odds ratio [OR] 1·3, 95% CI 1·09–1·52, p=0·002) and osteoporosis (OR 1·3, 1·08–1·63, p=0·008). Three SNPs near the TNFRSF11B gene were associated with decreased bone mineral density (top SNP, rs4355801: p=7·6×10−10 for lumbar spine and p=3·3×10−8 for femoral neck) and increased risk of osteoporosis (OR 1·2, 95% CI 1·01–1·42, p=0·038). For carriers of the risk allele at rs4355801, expression of TNFRSF11B in lymphoblast cell lines was halved (p=3·0×10−6). 1883 (22%) of 8557 people were at least heterozygous for these risk alleles, and these alleles had a cumulative association with bone mineral density (trend p=2·3×10−17). The presence of both risk alleles increased the risk of osteoporotic fractures (OR 1·3, 1·08–1·63, p=0·006) and this effect was independent of bone mineral density. Interpretation Two gene variants of key biological proteins increase the risk of osteoporosis and osteoporotic fracture. The combined effect of these risk alleles on fractures is similar to that of most well-replicated environmental risk factors, and they are present in more than one in five white people, suggesting a potential role in screening. Funding Wellcome Trust, European Commission, NWO Investments, Arthritis Research Campaign, Chronic Disease Research Foundation, Canadian Institutes of Health Research, European Society for Clinical and Economic Aspects of Osteoporosis, Genome Canada, Genome Quebéc, Canada Research Chairs, National Health and Medical Research Council of Australia, and European Union.


PLOS ONE | 2013

Genetic loci for retinal arteriolar microcirculation

Xueling Sim; Richard Jensen; M. Kamran Ikram; Mary Frances Cotch; Xiaohui Li; Stuart MacGregor; Jing Xie; Albert V. Smith; Eric Boerwinkle; Paul Mitchell; Ronald Klein; Barbara Ek Klein; Nicole L. Glazer; Thomas Lumley; Barbara McKnight; Bruce M. Psaty; Paulus T. V. M. de Jong; Albert Hofman; Fernando Rivadeneira; André G. Uitterlinden; Cornelia M. van Duijn; Thor Aspelund; Gudny Eiriksdottir; Tamara B. Harris; Fridbert Jonasson; Lenore J. Launer; John Attia; Paul N. Baird; Stephen B. Harrap; Elizabeth G. Holliday

Narrow arterioles in the retina have been shown to predict hypertension as well as other vascular diseases, likely through an increase in the peripheral resistance of the microcirculatory flow. In this study, we performed a genome-wide association study in 18,722 unrelated individuals of European ancestry from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium and the Blue Mountain Eye Study, to identify genetic determinants associated with variations in retinal arteriolar caliber. Retinal vascular calibers were measured on digitized retinal photographs using a standardized protocol. One variant (rs2194025 on chromosome 5q14 near the myocyte enhancer factor 2C MEF2C gene) was associated with retinal arteriolar caliber in the meta-analysis of the discovery cohorts at genome-wide significance of P-value <5×10−8. This variant was replicated in an additional 3,939 individuals of European ancestry from the Australian Twins Study and Multi-Ethnic Study of Atherosclerosis (rs2194025, P-value = 2.11×10−12 in combined meta-analysis of discovery and replication cohorts). In independent studies of modest sample sizes, no significant association was found between this variant and clinical outcomes including coronary artery disease, stroke, myocardial infarction or hypertension. In conclusion, we found one novel loci which underlie genetic variation in microvasculature which may be relevant to vascular disease. The relevance of these findings to clinical outcomes remains to be determined.


Nature Genetics | 2012

Genome-wide association study identifies multiple loci influencing human serum metabolite levels

Johannes Kettunen; Taru Tukiainen; Antti-Pekka Sarin; Alfredo Ortega-Alonso; Emmi Tikkanen; L. P. Lyytikäinen; Antti J. Kangas; Pasi Soininen; Peter Würtz; Kaisa Silander; Danielle M. Dick; Richard J. Rose; Markku J. Savolainen; J. Viikari; Mika Kähönen; Terho Lehtimäki; Kirsi H. Pietiläinen; Michael Inouye; Mark I. McCarthy; Antti Jula; Johan G. Eriksson; Olli T. Raitakari; Salomaa; Jaakko Kaprio; Järvelin Mr; Leena Peltonen; Markus Perola; Nelson B. Freimer; Mika Ala-Korpela; Aarno Palotie

Nuclear magnetic resonance assays allow for measurement of a wide range of metabolic phenotypes. We report here the results of a GWAS on 8,330 Finnish individuals genotyped and imputed at 7.7 million SNPs for a range of 216 serum metabolic phenotypes assessed by NMR of serum samples. We identified significant associations (P < 2.31 × 10−10) at 31 loci, including 11 for which there have not been previous reports of associations to a metabolic trait or disorder. Analyses of Finnish twin pairs suggested that the metabolic measures reported here show higher heritability than comparable conventional metabolic phenotypes. In accordance with our expectations, SNPs at the 31 loci associated with individual metabolites account for a greater proportion of the genetic component of trait variance (up to 40%) than is typically observed for conventional serum metabolic phenotypes. The identification of such associations may provide substantial insight into cardiometabolic disorders.


Nature Genetics | 2008

Genetic determinants of ulcerative colitis include the ECM1 locus and five loci implicated in Crohn's disease

Sheila Fisher; Mark Tremelling; Carl A. Anderson; Rhian Gwilliam; Suzannah Bumpstead; Natalie J. Prescott; Elaine R. Nimmo; Dunecan Massey; Carlo Berzuini; Christopher M. Johnson; Jeffrey C. Barrett; Fraser Cummings; Hazel E. Drummond; Charlie W. Lees; Clive M. Onnie; Catherine Hanson; Katarzyna Blaszczyk; Michael Inouye; Philip Ewels; Radhi Ravindrarajah; Andrew Keniry; Sarah Hunt; Martyn J. Carter; Nicholas J. Watkins; Willem H. Ouwehand; Cathryn M. Lewis; L R Cardon; Alan J. Lobo; Alastair Forbes; Jeremy Sanderson

We report results of a nonsynonymous SNP scan for ulcerative colitis and identify a previously unknown susceptibility locus at ECM1. We also show that several risk loci are common to ulcerative colitis and Crohns disease (IL23R, IL12B, HLA, NKX2-3 and MST1), whereas autophagy genes ATG16L1 and IRGM, along with NOD2 (also known as CARD15), are specific for Crohns disease. These data provide the first detailed illustration of the genetic relationship between these common inflammatory bowel diseases.


Nature Immunology | 2013

The developmental pathway for CD103+CD8+ tissue-resident memory T cells of skin

Laura K. Mackay; Azad Rahimpour; Joel Z. Ma; Nicholas Collins; Angus T. Stock; Ming-Li Hafon; Javier Vega-Ramos; Pilar Lauzurica; Scott N. Mueller; Tijana Stefanovic; David C. Tscharke; William R. Heath; Michael Inouye; Francis R. Carbone; Thomas Gebhardt

Tissue-resident memory T cells (TRM cells) provide superior protection against infection in extralymphoid tissues. Here we found that CD103+CD8+ TRM cells developed in the skin from epithelium-infiltrating precursor cells that lacked expression of the effector-cell marker KLRG1. A combination of entry into the epithelium plus local signaling by interleukin 15 (IL-15) and transforming growth factor-β (TGF-β) was required for the formation of these long-lived memory cells. Notably, differentiation into TRM cells resulted in the progressive acquisition of a unique transcriptional profile that differed from that of circulating memory cells and other types of T cells that permanently reside in skin epithelium. We provide a comprehensive molecular framework for the local differentiation of a distinct peripheral population of memory cells that forms a first-line immunological defense system in barrier tissues.


The Lancet | 2008

LDL-cholesterol concentrations: a genome-wide association study

Manjinder S. Sandhu; Dawn M. Waterworth; Sally L Debenham; Eleanor Wheeler; Konstantinos A. Papadakis; Jing Hua Zhao; Kijoung Song; Xin H. Yuan; Toby Johnson; Sofie Ashford; Michael Inouye; Robert Luben; Matthew Sims; David Hadley; Wendy L. McArdle; Philip J. Barter; Y. Antero Kesäniemi; Robert W. Mahley; Ruth McPherson; Scott M. Grundy; Sheila Bingham; Kay-Tee Khaw; Ruth J. F. Loos; Gérard Waeber; Inês Barroso; David P. Strachan; Panagiotis Deloukas; Peter Vollenweider; Nicholas J. Wareham; Vincent Mooser

Summary Background LDL cholesterol has a causal role in the development of cardiovascular disease. Improved understanding of the biological mechanisms that underlie the metabolism and regulation of LDL cholesterol might help to identify novel therapeutic targets. We therefore did a genome-wide association study of LDL-cholesterol concentrations. Methods We used genome-wide association data from up to 11 685 participants with measures of circulating LDL-cholesterol concentrations across five studies, including data for 293 461 autosomal single nucleotide polymorphisms (SNPs) with a minor allele frequency of 5% or more that passed our quality control criteria. We also used data from a second genome-wide array in up to 4337 participants from three of these five studies, with data for 290 140 SNPs. We did replication studies in two independent populations consisting of up to 4979 participants. Statistical approaches, including meta-analysis and linkage disequilibrium plots, were used to refine association signals; we analysed pooled data from all seven populations to determine the effect of each SNP on variations in circulating LDL-cholesterol concentrations. Findings In our initial scan, we found two SNPs (rs599839 [p=1·7×10−15] and rs4970834 [p=3·0×10−11]) that showed genome-wide statistical association with LDL cholesterol at chromosomal locus 1p13.3. The second genome screen found a third statistically associated SNP at the same locus (rs646776 [p=4·3×10−9]). Meta-analysis of data from all studies showed an association of SNPs rs599839 (combined p=1·2×10−33) and rs646776 (p=4·8×10−20) with LDL-cholesterol concentrations. SNPs rs599839 and rs646776 both explained around 1% of the variation in circulating LDL-cholesterol concentrations and were associated with about 15% of an SD change in LDL cholesterol per allele, assuming an SD of 1 mmol/L. Interpretation We found evidence for a novel locus for LDL cholesterol on chromosome 1p13.3. These results potentially provide insight into the biological mechanisms that underlie the regulation of LDL cholesterol and might help in the discovery of novel therapeutic targets for cardiovascular disease.


Nature Genetics | 2009

Genome-wide and fine-resolution association analysis of malaria in West Africa.

Muminatou Jallow; Yik-Ying Teo; Kerrin S. Small; Kirk A. Rockett; Panos Deloukas; Taane G. Clark; Katja Kivinen; Kalifa Bojang; David J. Conway; Margaret Pinder; Giorgio Sirugo; Fatou Sisay-Joof; Stanley Usen; Sarah Auburn; Suzannah Bumpstead; Susana Campino; Alison J. Coffey; Andrew Dunham; Andrew E. Fry; Angela Green; Rhian Gwilliam; Sarah Hunt; Michael Inouye; Anna Jeffreys; Alieu Mendy; Aarno Palotie; Simon Potter; Jiannis Ragoussis; Jane Rogers; Kate Rowlands

We report a genome-wide association (GWA) study of severe malaria in The Gambia. The initial GWA scan included 2,500 children genotyped on the Affymetrix 500K GeneChip, and a replication study included 3,400 children. We used this to examine the performance of GWA methods in Africa. We found considerable population stratification, and also that signals of association at known malaria resistance loci were greatly attenuated owing to weak linkage disequilibrium (LD). To investigate possible solutions to the problem of low LD, we focused on the HbS locus, sequencing this region of the genome in 62 Gambian individuals and then using these data to conduct multipoint imputation in the GWA samples. This increased the signal of association, from P = 4 × 10−7 to P = 4 × 10−14, with the peak of the signal located precisely at the HbS causal variant. Our findings provide proof of principle that fine-resolution multipoint imputation, based on population-specific sequencing data, can substantially boost authentic GWA signals and enable fine mapping of causal variants in African populations.


Nature Genetics | 2010

Genome-wide association study of migraine implicates a common susceptibility variant on 8q22.1

Verneri Anttila; Hreinn Stefansson; Mikko Kallela; Unda Todt; Gisela M. Terwindt; M. S. Calafato; Dale R. Nyholt; Antigone S. Dimas; Tobias Freilinger; Bertram Müller-Myhsok; Ville Artto; Michael Inouye; Kirsi Alakurtti; Mari A. Kaunisto; Eija Hämäläinen; B.B.A. de Vries; Anine H. Stam; Claudia M. Weller; A. Heinze; K. Heinze-Kuhn; Ingrid Goebel; Guntram Borck; Hartmut Göbel; Stacy Steinberg; Christiane Wolf; Asgeir Björnsson; Gudmundur Gudmundsson; M. Kirchmann; A. Hauge; Thomas Werge

Migraine is a common episodic neurological disorder, typically presenting with recurrent attacks of severe headache and autonomic dysfunction. Apart from rare monogenic subtypes, no genetic or molecular markers for migraine have been convincingly established. We identified the minor allele of rs1835740 on chromosome 8q22.1 to be associated with migraine (P = 5.38 × 10−9, odds ratio = 1.23, 95% CI 1.150–1.324) in a genome-wide association study of 2,731 migraine cases ascertained from three European headache clinics and 10,747 population-matched controls. The association was replicated in 3,202 cases and 40,062 controls for an overall meta-analysis P value of 1.69 × 10−11 (odds ratio = 1.18, 95% CI 1.127–1.244). rs1835740 is located between MTDH (astrocyte elevated gene 1, also known as AEG-1) and PGCP (encoding plasma glutamate carboxypeptidase). In an expression quantitative trait study in lymphoblastoid cell lines, transcript levels of the MTDH were found to have a significant correlation to rs1835740 (P = 3.96 × 10−5, permuted threshold for genome-wide significance 7.7 × 10−5). To our knowledge, our data establish rs1835740 as the first genetic risk factor for migraine.

Collaboration


Dive into the Michael Inouye's collaboration.

Top Co-Authors

Avatar

Gad Abraham

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shu Mei Teo

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar

Panos Deloukas

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Markus Perola

National Institute for Health and Welfare

View shared research outputs
Top Co-Authors

Avatar

Veikko Salomaa

National Institute for Health and Welfare

View shared research outputs
Top Co-Authors

Avatar

Patrick G. Holt

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge