Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael J. Baum is active.

Publication


Featured researches published by Michael J. Baum.


Neuroscience | 1992

Increased expression of c-fos in the medial preoptic area after mating in male rats : role of afferent inputs from the medial amygdala and midbrain central tegmental field

Michael J. Baum; Barry J. Everitt

Immunocytochemical methods were used to localize the protein product of the immediate-early gene, c-fos, in male rats after exposure to, or direct physical interaction with, oestrous females. Increasing amounts of physical contact with a female, with resultant olfactory-vomeronasal and/or genital-somatosensory inputs, caused corresponding increments in c-fos expression in the medial preoptic area, the caudal part of the bed nucleus of the stria terminalis, the medial amygdala, and the midbrain central tegmental field. Males bearing unilateral electrothermal lesions of the olfactory peduncle showed a significant reduction in c-fos expression in the ipsilateral medial amygdala, but not in other structures, provided their coital interaction with oestrous females was restricted to mount-thrust and occasional intromissive patterns due to repeated application of lidocaine anaesthetic to the penis. No such lateralization of c-fos expression occurred in other males with unilateral olfactory lesions which were allowed to intromit and ejaculate with a female. These results suggest that olfactory inputs, possibly of vomeronasal origin, contribute to the activation of c-fos in the medial amygdala. However, lesion-induced deficits in this type of afferent input to the nervous system appear to be readily compensated for by the genital somatosensory input derived from repeated intromissions. Unilateral excitotoxic lesions of the medial preoptic area, made by infusing quinolinic acid, failed to reduce c-fos expression in the ipsilateral or contralateral medial amygdala or central tegmental field following ejaculation. By contrast, combined, unilateral excitotoxic lesions of the medial amygdala and the central tegmental field significantly reduced c-fos expression in the ipsilateral bed nucleus of the stria terminalis and medial preoptic area after mating; no such asymmetry in c-fos expression occurred when lesions were restricted to either the medial amygdala or central tegmental field. This suggests that afferent inputs from the central tegmental field (probably of genital-somatosensory origin) and from the medial amygdala (probably of olfactory-vomeronasal origin) interact to promote cellular activity, and the resultant induction of c-fos, in the ipsilateral bed nucleus of the stria terminalis and medial preoptic area. The monitoring of neuronal c-fos expression provides an effective means of studying the role of sensory factors in governing the activity of integrated neural structures which control the expression of a complex social behaviour.


Neuroscience & Biobehavioral Reviews | 1979

Differentiation of coital behavior in mammals: a comparative analysis.

Michael J. Baum

The evidence reviewed suggests that in all mammalian species the adult males ability to display masculine coital behavior depends in part on exposure of the developing brain to testicular testosterone or its metabolites. In many mammals, particularly rodents, ruminants, and some carnivores, perinatal exposure to androgen also causes behavioral defeminization, i.e., reduced capacity to display typically feminine coital behavior in response to gonadal hormones in adulthood. The data reviewed suggest that no such process occurs in certain other mammalian species, including ferret, rhesus monkey, marmoset, and man. Testicular androgen may cause behavioral defeminization only in those species in which expression of feminine sexual behavior normally depends on the neural action of progesterone, acting synergistically with estradiol; new data support this claim in the ferret. The possible contribution of estrogenic and 5 alpha-reduced androgenic metabolites of testosterone to the occurrence of behavioral masculinization and defeminization is considered in those mammalian species for which data are available.


Science | 1973

Copulation in Castrated Male Rats following Combined Treatment with Estradiol and Dihydrotestosterone

Michael J. Baum; J. T. M. Vreeburg

Castrated male rats injected daily with 2 micrograms of estradiol benzoate (EB) combined with 200 micrograms of dihydrotestosterone propionate (DHTP) displayed masculine mating behavior which was indistinguishable from that of other castrates treated with 200 micrograms of testosterone propionate (TP). Significantly less copulation was seen in rats treated with either 4 micrograms of TP plus 200 micrograms of DHTP or 2 micrograms of EB. Mating in male rats may depend on the action of both estrogenic and 5α-dihydro metabolites of testosterone.


The Journal of Neuroscience | 2004

Olfactory sex discrimination persists, whereas the preference for urinary odorants from estrous females disappears in male mice after vomeronasal organ removal.

Diana E. Pankevich; Michael J. Baum; James A. Cherry

Based on observed changes in the social context for the display of ultrasonic vocalizations, scent marking, aggression, and mounting behavior by male mice with a null mutation of the transient receptor potential 2 ion channel, it was proposed recently that a primary function of the mouse vomeronasal organ (VNO)/accessory olfactory system is sex discrimination. We tested this hypothesis directly by studying the ability of male mice to discriminate between urinary odors of conspecifics of the two sexes and in different endocrine states using habituation-dishabituation tests. Male mice from which the VNO had been surgically removed (VNOx) resembled sham-operated controls (VNOi) in their ability to discriminate between volatile urinary odors from estrous females versus gonadally intact males, as well as between urinary odors from estrous versus ovariectomized females and from gonadally intact versus castrated males. When physical access to stimuli was permitted, VNOi control males strongly preferred to investigate volatile and nonvolatile urinary odorants from estrous females as opposed to intact males, whereas VNOx males showed no such preference. Mating performance in tests with estrous females was equivalent in VNOi and VNOx subjects. Both groups of males preferred to mount an estrous female instead of a castrated male. Our results suggest that the VNO is not required for sex discrimination but instead detects the nonvolatile components of opposite-sex urine that may be used to help prolong contact with individuals that produce these chemosignals.


Journal of Clinical Investigation | 2008

Genetic and hormonal factors modulate spreading depression and transient hemiparesis in mouse models of familial hemiplegic migraine type 1

Katharina Eikermann-Haerter; Ergin Dilekoz; Chiho Kudo; Sean I. Savitz; Christian Waeber; Michael J. Baum; Michel D. Ferrari; Arn M. J. M. van den Maagdenberg; Michael A. Moskowitz; Cenk Ayata

Familial hemiplegic migraine type 1 (FHM1) is an autosomal dominant subtype of migraine with aura that is associated with hemiparesis. As with other types of migraine, it affects women more frequently than men. FHM1 is caused by mutations in the CACNA1A gene, which encodes the alpha1A subunit of Cav2.1 channels; the R192Q mutation in CACNA1A causes a mild form of FHM1, whereas the S218L mutation causes a severe, often lethal phenotype. Spreading depression (SD), a slowly propagating neuronal and glial cell depolarization that leads to depression of neuronal activity, is the most likely cause of migraine aura. Here, we have shown that transgenic mice expressing R192Q or S218L FHM1 mutations have increased SD frequency and propagation speed; enhanced corticostriatal propagation; and, similar to the human FHM1 phenotype, more severe and prolonged post-SD neurological deficits. The susceptibility to SD and neurological deficits is affected by allele dosage and is higher in S218L than R192Q mutants. Further, female S218L and R192Q mutant mice were more susceptible to SD and neurological deficits than males. This sex difference was abrogated by ovariectomy and senescence and was partially restored by estrogen replacement, implicating ovarian hormones in the observed sex differences in humans with FHM1. These findings demonstrate that genetic and hormonal factors modulate susceptibility to SD and neurological deficits in FHM1 mutant mice, providing a potential mechanism for the phenotypic diversity of human migraine and aura.


Neuroscience | 1996

Sex comparison of neuronal fos immunoreactivity in the rat vomeronasal projection circuit after chemosensory stimulation

S.C. Bressler; Michael J. Baum

In rodents, reproductively relevant pheromonal cues are detected by receptors in the vomeronasal organ, which in turn transmit this information centrally via the accessory olfactory bulb, the medial nucleus of the amygdala, the posterior medial bed nucleus of the stria terminalis and the medial preoptic area. In the rat, more neurons are present in males than in females at virtually every relay in this vomeronasal projection circuit. Using Fos immunoreactivity as a marker of neuronal activation, we compared the ability of pheromonal cues derived from the urine and feces of estrous or anestrous female rats to activate neurons in this vomeronasal projection circuit in sexually experienced, gonadectomized male and female rats which were chronically treated in adulthood with a high dose of testosterone propionate (5 mg/kg). When compared with rats killed after 2 h of exposure to clean bedding, male and female subjects exposed for 2 h to bedding from estrous females had similar and significant increments in the number of Fos-immunoreactive neurons at each level of the vomeronasal projection circuit, including the granular layer of the accessory olfactory bulb, the posterior dorsal portion of the medial amygdaloid nucleus, the posterior medial portion of the bed nucleus of the stria terminalis and the medial preoptic area. Exposure to bedding from anestrous females stimulated similar and significant increments in Fos immunoreactivity in most of these same brain regions. Chemosensory stimulation failed to augment Fos immunoreactivity in neurons located in the ventrolateral subregion of the ventromedial nucleus of the hypothalamus or in the midbrain central tegmental field, sites at which mating has previously been shown to augment Fos immunoreactivity in both sexes. Finally, chemosensory stimulation augmented Fos immunoreactivity in the nucleus accumbens shell and core, two regions receiving dopaminergic afferents which have been implicated in sexual reward. On two occasions all subjects were given simultaneous access to bowls containing bedding from estrous versus anestrous females. Both males and females spent significantly more time investigating the estrous bedding, although the total time spent investigating either type of bedding was significantly greater in males. The results suggest that the previously established sexual dimorphism in the morphology of the rats vomeronasal projection circuit is not reflected in the functional responsiveness of neurons in this circuit to chemosensory cues emitted by female conspecifics.


Journal of Neurobiology | 1999

Vomeronasal neuroepithelium and forebrain Fos responses to male pheromones in male and female mice.

H. A. Halem; James A. Cherry; Michael J. Baum

Male urinary pheromones modulate behavioral and neuroendocrine function in mice after being detected by sensory neurons in the vomeronasal organ (VNO) neuroepithelium. We used nuclear Fos protein immunoreactivity (Fos-IR) as a marker of changes in neuronal activity to examine the processing of male pheromones throughout the VNO projection pathway to the hypothalamus. Sexually naive male and female Balb/c mice were gonadectomized and treated daily with estradiol benzoate (EB) or oil vehicle for 3 weeks. Subjects were then exposed to soiled bedding from gonadally intact Balb/c males or to clean bedding for 90 min prior to sacrifice and processing of their VNOs and forebrains for Fos-IR. Male pheromones induced similar numbers of Fos-IR cells in the VNO neuroepithelium of oil-treated male and female subjects; however, EB-treated females had significantly more Fos-IR neurons in the VNO than any other group. There was an equivalent neuronal Fos response to male odors in the mitral and granule cells of the anterior and posterior accessory olfactory bulb of males and females, regardless of hormone treatment. In central portions of the VNO projection pathway (i.e., bed nucleus of the stria terminalis, medial preoptic area) neuronal Fos responses to male pheromones were present in female but absent in male subjects, regardless of hormone treatment. In a separate experiment, mating induced neuronal Fos-IR in these brain regions at levels in gonadally intact male subjects which were equal to or greater than those seen in ovariectomized females primed with estrogen and progesterone. This suggests that neurons in the central portions of the males VNO pathway are capable of expressing Fos. Our results suggest that sexually dimorphic central responses to pheromones exist in mice that may begin in the VNO neuroepithelium.


Journal of Neuroendocrinology | 1993

Mating-induced FOS-like immunoreactivity in the rat forebrain: a sex comparison and a dimorphic effect of pelvic nerve transection

Scott R. Wersinger; Michael J. Baum; Mary S. Erskine

Previous research has shown that mating induces the expression of the immediate‐early gene, c‐fos, as detected by the increased presence of nuclear FOS‐like immunoreactivity (FOS‐IR), in specific forebrain regions of both male and female rats. In the male both olfactory/vomeronasal (O/V) and genital/somatosensory (G/S) inputs appear to contribute to the neural FOS response to mating whereas in the female G/S input carried by the pelvic nerves appears to mediate the forebrain FOS response. To date, however, no direct sex comparison of the mating‐induced forebrain FOS response has been made in rats maintained under the same steroidal conditions nor has the contribution of afferent sensory input from the pelvic nerves been assessed in males. We first compared the level of FOS‐IR in brain regions of mated and unpaired gonadectomized male and female rats given 5μg/kg estradiol benzoate (EB) for 7 days and 500 μg progesterone (P) 4 h prior to testing. One h after experiencing 1 ejaculation, both sexes showed increased FOS‐IR in the medial preoptic area (MPOA), bed nucleus of the stria terminalis (BNST), medial amygdala, the ventro‐lateral portion of the ventromedial nucleus of the hypothalamus (VMN), and the midbrain central tegmental field (CTF). This increase was significantly greater in the MPOA and medial amygdala of mated females than of males. Bilateral transection of the pelvic nerves significantly attenuated the increase in FOS‐IR after mating in the CTF of male rats and in the MPOA, BNST, VMN, medial amygdala and CTF of females. Thus, following mating there is no sex difference in the brain regions which express c‐fos, but there is a dimorphism in the contribution of afferent information conveyed by the pelvic nerves to the mating‐induced FOS response. The neural FOS response of the female to mating is heavily dependent upon the G/S afferent inputs carried by the pelvic nerves whereas the males neural c‐fos response may depend on O/V input plus G/S input conveyed via other afferent pathways such as the pudendal nerves.


Behavioural Brain Research | 2009

The main and the accessory olfactory systems interact in the control of mate recognition and sexual behavior

Matthieu Keller; Michael J. Baum; Olivier Brock; Peter A. Brennan; Julie Bakker

In the field of sensory perception, one noticeable fact regarding olfactory perception is the existence of several olfactory subsystems involved in the detection and processing of olfactory information. Indeed, the vomeronasal or accessory olfactory system is usually conceived as being involved in the processing of pheromones as it is closely connected to the hypothalamus, thereby controlling reproductive function. By contrast, the main olfactory system is considered as a general analyzer of volatile chemosignals, used in the context of social communication, for the identification of the status of conspecifics. The respective roles played by the main and the accessory olfactory systems in the control of mate recognition and sexual behavior are at present still controversial. We summarize in this review recent results showing that both the main and accessory olfactory systems are able to process partially overlapping sets of sexual chemosignals and that both systems support complimentary aspects in mate recognition and in the control of sexual behavior.


European Journal of Neuroscience | 2006

The vomeronasal organ is required for the expression of lordosis behaviour, but not sex discrimination in female mice

Matthieu Keller; Sylvie Pierman; Quentin Douhard; Michael J. Baum; Julie Bakker

The role of the vomeronasal organ (VNO) in mediating neuroendocrine responses in female mice is well known; however, whether the VNO is equally important for sex discrimination is more controversial as evidence exists for a role of the main olfactory system in mate recognition. Therefore, we studied the effect of VNO removal (VNOx) on the ability of female mice to discriminate between volatile and non‐volatile odours of conspecifics of the two sexes and in different endocrine states using Y‐maze tests. VNOx female mice were able to reliably distinguish between male and female or male and gonadectomized (gdx) male volatile odours. However, when subjects had to discriminate between male and female or gdx male non‐volatile odours, VNOx females were no longer able to discriminate between sex or different endocrine status. These results thus show that the VNO is primarily involved in the detection and processing of non‐volatile odours, and that female mice can use volatile odours detected and processed by the main olfactory system for mate recognition. However, VNO inputs are needed to promote contact with the male, including facilitation of lordosis responses to his mounts. A single subcutaneous injection with gonadotropin‐releasing hormone (GnRH) partially reversed the deficit in lordosis behaviour observed in VNOx females suggesting that VNO inputs may reach hypothalamic GnRH neurons to influence the display of sexual behaviour.

Collaboration


Dive into the Michael J. Baum's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S.A. Tobet

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge