Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael J. Benton is active.

Publication


Featured researches published by Michael J. Benton.


Systematic Biology | 2012

Best Practices for Justifying Fossil Calibrations

James F. Parham; Philip C. J. Donoghue; Christopher J. Bell; Tyler Calway; Jason J. Head; Patricia A. Holroyd; Jun Inoue; Randall B. Irmis; Walter G. Joyce; Daniel T. Ksepka; José S. L. Patané; Nathan D. Smith; James E. Tarver; Marcel van Tuinen; Ziheng Yang; Kenneth D. Angielczyk; Jenny M. Greenwood; Christy A. Hipsley; Louis L. Jacobs; Peter J. Makovicky; Johannes Müller; Krister T. Smith; Jessica M. Theodor; Rachel C. M. Warnock; Michael J. Benton

Our ability to correlate biological evolution with climate change, geological evolution, and other historical patterns is essential to understanding the processes that shape biodiversity. Combining data from the fossil record with molecular phylogenetics represents an exciting synthetic approach to this challenge. The first molecular divergence dating analysis (Zuckerkandl and Pauling 1962) was based on a measure of the amino acid differences in the hemoglobin molecule, with replacement rates established (calibrated) using paleontological age estimates from textbooks (e.g., Dodson 1960). Since that time, the amount of molecular sequence data has increased dramatically, affording ever-greater opportunities to apply molecular divergence approaches to fundamental problems in evolutionary biology. To capitalize on these opportunities, increasingly sophisticated divergence dating methods have been, and continue to be, developed. In contrast, comparatively, little attention has been devoted to critically assessing the paleontological and associated geological data used in divergence dating analyses. The lack of rigorous protocols for assigning calibrations based on fossils raises serious questions about the credibility of divergence dating results (e.g., Shaul and Graur 2002; Brochu et al. 2004; Graur and Martin 2004; Hedges and Kumar 2004; Reisz and Muller 2004a, 2004b; Theodor 2004; van Tuinen and Hadly 2004a, 2004b; van Tuinen et al. 2004; Benton and Donoghue 2007; Donoghue and Benton 2007; Parham and Irmis 2008; Ksepka 2009; Benton et al. 2009; Heads 2011). The assertion that incorrect calibrations will negatively influence divergence dating studies is not controversial. Attempts to identify incorrect calibrations through the use of a posteriori methods are available (e.g., Near and Sanderson 2004; Near et al. 2005; Rutschmann et al. 2007; Marshall 2008; Pyron 2010; Dornburg et al. 2011). We do not deny that a posteriori methods are a useful means of evaluating calibrations, but there can be no substitute for a priori assessment of the veracity of paleontological data. Incorrect calibrations, those based upon fossils that are phylogenetically misplaced or assigned incorrect ages, clearly introduce error into an analysis. Consequently, thorough and explicit justification of both phylogenetic and chronologic age assessments is necessary for all fossils used for calibration. Such explicit justifications will help to ensure that divergence dating studies are based on the best available data. Unfortunately, the majority of previously published calibrations lack explicit explanations and justifications of the age and phylogenetic position of the key fossils. In the absence of explicit justifications, it is difficult to distinguish between correct and incorrect calibrations, and it becomes difficult to reevaluate previous claims in light of new data. Paleontology is a dynamic science, with new data and perspectives constantly emerging as a result of new discoveries (see Kimura 2010 for a recent case where the age of the earliest known record of a clade was more than doubled). Calibrations based upon the best available evidence at a given time can become inappropriate as the discovery of new specimens, new phylogenetic analyses, and ongoing stratigraphic and geochronologic revisions refine our understanding of the fossil record. Our primary goals in this paper are to establish the best practices for justifying fossils used for the temporal calibration of molecular phylogenies. Our examples derive mainly, but not exclusively, from the vertebrate fossil record. We hope that our recommendations will lead to more credible calibrations and, as a result, more reliable divergence dates throughout the tree of life. A secondary goal is to help the community (researchers, editors, and reviewers) who might be unfamiliar with fossils to understand and overcome the challenges associated with using paleontological data. In order to accomplish these goals, we present a specimen-based protocol for selecting and documenting relevant fossils and discuss future directions for evaluating and utilizing phylogenetic and temporal data from the fossil record. We likewise encourage biologists relying on nonfossil calibrations for molecular divergence estimates (e.g., ages of island or mountain range formations, continental drift, and biomarkers) to develop their own set of rigorous guidelines so that their calibrations may also be evaluated in a systematic way.


Science | 2009

The Red Queen and the Court Jester: species diversity and the role of biotic and abiotic factors through time.

Michael J. Benton

Evolution may be dominated by biotic factors, as in the Red Queen model, or abiotic factors, as in the Court Jester model, or a mixture of both. The two models appear to operate predominantly over different geographic and temporal scales: Competition, predation, and other biotic factors shape ecosystems locally and over short time spans, but extrinsic factors such as climate and oceanographic and tectonic events shape larger-scale patterns regionally and globally, and through thousands and millions of years. Paleobiological studies suggest that species diversity is driven largely by abiotic factors such as climate, landscape, or food supply, and comparative phylogenetic approaches offer new insights into clade dynamics.


Science | 2008

Superiority, Competition, and Opportunism in the Evolutionary Radiation of Dinosaurs

Stephen L. Brusatte; Michael J. Benton; Marcello Ruta; Graeme T. Lloyd

The rise and diversification of the dinosaurs in the Late Triassic, from 230 to 200 million years ago, is a classic example of an evolutionary radiation with supposed competitive replacement. A comparison of evolutionary rates and morphological disparity of basal dinosaurs and their chief “competitors,” the crurotarsan archosaurs, shows that dinosaurs exhibited lower disparity and an indistinguishable rate of character evolution. The radiation of Triassic archosaurs as a whole is characterized by declining evolutionary rates and increasing disparity, suggesting a decoupling of character evolution from body plan variety. The results strongly suggest that historical contingency, rather than prolonged competition or general “superiority,” was the primary factor in the rise of dinosaurs.


Journal of Molecular Evolution | 1990

Phylogeny of the major tetrapod groups : morphological data and divergence dates

Michael J. Benton

SummaryThe phylogeny of the major groups of tetrapods (amphibians, reptiles, birds, and mammals) has until recently been poorly understood. Cladistic analyses of morphological data are producing new hypotheses concerning the relationships of the major groups, with a focus on the identification of monophyletic groups. Molecular phylogenies support some of these views and dispute others. Geological dates of the major evolutionary branching points are recalculated on the basis of the cladograms and new fossil finds.


Nature | 2004

Ecosystem remodelling among vertebrates at the Permian-Triassic boundary in Russia.

Michael J. Benton; Valentin P. Tverdokhlebov; Mikhail V. Surkov

The mass extinction at the Permian–Triassic boundary, 251 million years (Myr) ago, is accepted as the most profound loss of life on record. Global data compilations indicate a loss of 50% of families or more, both in the sea and on land, and these figures scale to a loss of 80–96% of species, based on rarefaction analyses. This level of loss is confirmed by local and regional-scale studies of marine sections, but the terrestrial record has been harder to analyse in such close detail. Here we document the nature of the event in Russia in a comprehensive survey of 675 specimens of amphibians and reptiles from 289 localities spanning 13 successive geological time zones in the South Urals basin. These changes in diversity and turnover cannot be explained simply by sampling effects. There was a profound loss of genera and families, and simplification of ecosystems, with the loss of small fish-eaters and insect-eaters, medium and large herbivores and large carnivores. Faunal dynamics also changed, from high rates of turnover through the Late Permian period to greater stability at low diversity through the Early Triassic period. Even after 15 Myr of ecosystem rebuilding, some guilds were apparently still absent—small fish-eaters, small insect-eaters, large herbivores and top carnivores.


Geology | 1995

Early Jurassic mass extinction: A global long-term event

Crispin T. S. Little; Michael J. Benton

The end-Pliensbachian extinction event (187 Ma) has been interpreted either as one of 10 global periodically recurring mass extinctions of the past 250 m.y. or as a minor localized European event. Elevated levels of family extinction spanned five ammonite zones during the late Pliensbachian and the early Toarcian, an interval of ∼7.5 m.y., and were distributed unequally in the Boreal, Tethyan, and Austral realms. Detailed sampling of invertebrate macrofaunas through complete expanded sequences in northwest Europe shows that most species extinctions occurred in the early Toarcian, following a regional anoxic event. The Early Jurassic mass-extinction event took place over a long time scale, and it was global in extent.


Proceedings of the Royal Society of London B: Biological Sciences | 2008

Dinosaurs and the Cretaceous Terrestrial Revolution

Graeme T. Lloyd; Katie E. Davis; Davide Pisani; James E. Tarver; Marcello Ruta; Manabu Sakamoto; David W. E. Hone; Rachel Jennings; Michael J. Benton

The observed diversity of dinosaurs reached its highest peak during the mid- and Late Cretaceous, the 50 Myr that preceded their extinction, and yet this explosion of dinosaur diversity may be explained largely by sampling bias. It has long been debated whether dinosaurs were part of the Cretaceous Terrestrial Revolution (KTR), from 125–80 Myr ago, when flowering plants, herbivorous and social insects, squamates, birds and mammals all underwent a rapid expansion. Although an apparent explosion of dinosaur diversity occurred in the mid-Cretaceous, coinciding with the emergence of new groups (e.g. neoceratopsians, ankylosaurid ankylosaurs, hadrosaurids and pachycephalosaurs), results from the first quantitative study of diversification applied to a new supertree of dinosaurs show that this apparent burst in dinosaurian diversity in the last 18 Myr of the Cretaceous is a sampling artefact. Indeed, major diversification shifts occurred largely in the first one-third of the groups history. Despite the appearance of new clades of medium to large herbivores and carnivores later in dinosaur history, these new originations do not correspond to significant diversification shifts. Instead, the overall geometry of the Cretaceous part of the dinosaur tree does not depart from the null hypothesis of an equal rates model of lineage branching. Furthermore, we conclude that dinosaurs did not experience a progressive decline at the end of the Cretaceous, nor was their evolution driven directly by the KTR.


Proceedings of the Royal Society of London B: Biological Sciences | 2008

Recovery from the most profound mass extinction of all time

Sarda Sahney; Michael J. Benton

The end-Permian mass extinction, 251 million years (Myr) ago, was the most devastating ecological event of all time, and it was exacerbated by two earlier events at the beginning and end of the Guadalupian, 270 and 260 Myr ago. Ecosystems were destroyed worldwide, communities were restructured and organisms were left struggling to recover. Disaster taxa, such as Lystrosaurus, insinuated themselves into almost every corner of the sparsely populated landscape in the earliest Triassic, and a quick taxonomic recovery apparently occurred on a global scale. However, close study of ecosystem evolution shows that true ecological recovery was slower. After the end-Guadalupian event, faunas began rebuilding complex trophic structures and refilling guilds, but were hit again by the end-Permian event. Taxonomic diversity at the alpha (community) level did not recover to pre-extinction levels; it reached only a low plateau after each pulse and continued low into the Late Triassic. Our data showed that though there was an initial rise in cosmopolitanism after the extinction pulses, large drops subsequently occurred and, counter-intuitively, a surprisingly low level of cosmopolitanism was sustained through the Early and Middle Triassic.


Nature | 2000

Quality of the fossil record through time.

Michael J. Benton; Ma Wills; Rebecca Hitchin

Does the fossil record present a true picture of the history of life, or should it be viewed with caution? Raup argued that plots of the diversification of life were an illustration of bias: the older the rocks, the less we know. The debate was partially resolved by the observation that different data sets gave similar patterns of rising diversity through time. Here we show that new assessment methods, in which the order of fossils in the rocks (stratigraphy) is compared with the order inherent in evolutionary trees (phylogeny), provide a more convincing analytical tool: stratigraphy and phylogeny offer independent data on history. Assessments of congruence between stratigraphy and phylogeny for a sample of 1,000 published phylogenies show no evidence of diminution of quality backwards in time. Ancient rocks clearly preserve less information, on average, than more recent rocks. However, if scaled to the stratigraphic level of the stage and the taxonomic level of the family, the past 540 million years of the fossil record provide uniformly good documentation of the life of the past.


Journal of Systematic Palaeontology | 2010

The higher-level phylogeny of Archosauria (Tetrapoda: Diapsida)

Stephen L. Brusatte; Michael J. Benton; Julia B. Desojo; Max C. Langer

Crown group Archosauria, which includes birds, dinosaurs, crocodylomorphs, and several extinct Mesozoic groups, is a primary division of the vertebrate tree of life. However, the higher-level phylogenetic relationships within Archosauria are poorly resolved and controversial, despite years of study. The phylogeny of crocodile-line archosaurs (Crurotarsi) is particularly contentious, and has been plagued by problematic taxon and character sampling. Recent discoveries and renewed focus on archosaur anatomy enable the compilation of a new dataset, which assimilates and standardizes character data pertinent to higher-level archosaur phylogeny, and is scored across the largest group of taxa yet analysed. This dataset includes 47 new characters (25% of total) and eight taxa that have yet to be included in an analysis, and total taxonomic sampling is more than twice that of any previous study. This analysis produces a well-resolved phylogeny, which recovers mostly traditional relationships within Avemetatarsalia, places Phytosauria as a basal crurotarsan clade, finds a close relationship between Aetosauria and Crocodylomorpha, and recovers a monophyletic Rauisuchia comprised of two major subclades. Support values are low, suggesting rampant homoplasy and missing data within Archosauria, but the phylogeny is highly congruent with stratigraphy. Comparison with alternative analyses identifies numerous scoring differences, but indicates that character sampling is the main source of incongruence. The phylogeny implies major missing lineages in the Early Triassic and may support a Carnian-Norian extinction event.

Collaboration


Dive into the Michael J. Benton's collaboration.

Top Co-Authors

Avatar

Wen Wen

China Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Shixue Hu

China Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qiyue Zhang

China Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge