Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael J. Birrer is active.

Publication


Featured researches published by Michael J. Birrer.


The New England Journal of Medicine | 2008

Dicer, Drosha, and outcomes in patients with ovarian cancer.

William M. Merritt; Yvonne G. Lin; Liz Y. Han; Aparna A. Kamat; Whitney A. Spannuth; Rosemarie Schmandt; Diana L. Urbauer; Len A. Pennacchio; Jan Fang Cheng; Alpa M. Nick; Michael T. Deavers; Alexandra A. Mourad-Zeidan; Hua Wang; Peter R. Mueller; Marc E. Lenburg; Joe W. Gray; Samuel Mok; Michael J. Birrer; Gabriel Lopez-Berestein; Robert L. Coleman; Menashe Bar-Eli; Anil K. Sood

BACKGROUND We studied Dicer and Drosha, components of the RNA-interference machinery, in ovarian cancer. METHODS We measured messenger RNA (mRNA) levels of Dicer and Drosha in specimens of invasive epithelial ovarian cancer from 111 patients, using a quantitative reverse-transcriptase-polymerase-chain-reaction assay, and compared the results with clinical outcomes. Validation was performed with the use of published microarray data from cohorts of patients with ovarian, breast, and lung cancer. Mutational analyses of genomic DNA from the Dicer and Drosha genes were performed in a subgroup of ovarian-cancer specimens. Dicer-dependent functional assays were performed by means of in vitro transfection with small interfering RNA (siRNA) and short hairpin RNA (shRNA). RESULTS Levels of Dicer and Drosha mRNA correlated with the levels of expression of the corresponding protein and were decreased in 60% and 51% of ovarian-cancer specimens, respectively. Low Dicer expression was significantly associated with advanced tumor stage (P=0.007), and low Drosha expression with suboptimal surgical cytoreduction (P=0.02). Cancer specimens with both high Dicer expression and high Drosha expression were associated with increased median survival (>11 years, vs. 2.66 years for other subgroups; P<0.001). We found three independent predictors of reduced disease-specific survival in multivariate analyses: low Dicer expression (hazard ratio, 2.10; P=0.02), high-grade histologic features (hazard ratio, 2.46; P=0.03), and poor response to chemotherapy (hazard ratio, 3.95; P<0.001). Poor clinical outcomes among patients with low Dicer expression were validated in additional cohorts of patients. Rare missense mutations were found in the Dicer and Drosha genes, but their presence or absence did not correlate with the level of expression. Functional assays indicated that gene silencing with shRNA, but not siRNA, may be impaired in cells with low Dicer expression. CONCLUSIONS Our findings indicate that levels of Dicer and Drosha mRNA in ovarian-cancer cells have associations with outcomes in patients with ovarian cancer.


Journal of Clinical Oncology | 2012

BRCA Mutation Frequency and Patterns of Treatment Response in BRCA Mutation–Positive Women With Ovarian Cancer: A Report From the Australian Ovarian Cancer Study Group

Kathryn Alsop; Sian Fereday; Cliff Meldrum; Anna deFazio; Catherine Emmanuel; Joshy George; Alexander Dobrovic; Michael J. Birrer; Penelope M. Webb; Colin J.R. Stewart; Michael Friedlander; Stephen B. Fox; David Bowtell; Gillian Mitchell

PURPOSE The frequency of BRCA1 and BRCA2 germ-line mutations in women with ovarian cancer is unclear; reports vary from 3% to 27%. The impact of germ-line mutation on response requires further investigation to understand its impact on treatment planning and clinical trial design. PATIENTS AND METHODS Women with nonmucinous ovarian carcinoma (n = 1,001) enrolled onto a population-based, case-control study were screened for point mutations and large deletions in both genes. Survival outcomes and responses to multiple lines of chemotherapy were assessed. RESULTS Germ-line mutations were found in 14.1% of patients overall, including 16.6% of serous cancer patients (high-gradeserous, 17.1%); [corrected] 44% had no reported family history of breast orovarian cancer.Patients carrying germ-line mutations had improved rates of progression-free and overall survival. In the relapse setting, patients carrying mutations more frequently responded to both platin- and nonplatin-based regimens than mutation-negative patients, even in patients with early relapse after primary treatment. Mutation-negative patients who responded to multiple cycles of platin-based treatment were more likely to carry somatic BRCA1/2 mutations. CONCLUSION BRCA mutation status has a major influence on survival in ovarian cancer patients and should be an additional stratification factor in clinical trials. Treatment outcomes in BRCA1/2 carriers challenge conventional definitions of platin resistance, and mutation status may be able to contribute to decision making and systemic therapy selection in the relapse setting. Our data, together with the advent of poly(ADP-ribose) polymerase inhibitor trials, supports the recommendation that germ-line BRCA1/2 testing should be offered to all women diagnosed with nonmucinous, ovarian carcinoma, regardless of family history.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer

Lin Zhang; Stefano Volinia; Tomas Bonome; George A. Calin; Joel Greshock; Nuo Yang; Chang Gong Liu; Antonis Giannakakis; Pangiotis Alexiou; Kosei Hasegawa; Cameron N. Johnstone; Molly Megraw; Sarah Adams; Heini Lassus; Jia Huang; Sippy Kaur; Shun Liang; Praveen Sethupathy; Arto Leminen; Victor A. Simossis; Raphael Sandaltzopoulos; Yoshio Naomoto; Dionyssios Katsaros; Phyllis A. Gimotty; Angela DeMichele; Qihong Huang; Ralf Bützow; Anil K. Rustgi; Barbara L. Weber; Michael J. Birrer

MicroRNAs (miRNAs) are an abundant class of small noncoding RNAs that function as negative gene regulators. miRNA deregulation is involved in the initiation and progression of human cancer; however, the underlying mechanism and its contributions to genome-wide transcriptional changes in cancer are still largely unknown. We studied miRNA deregulation in human epithelial ovarian cancer by integrative genomic approach, including miRNA microarray (n = 106), array-based comparative genomic hybridization (n = 109), cDNA microarray (n = 76), and tissue array (n = 504). miRNA expression is markedly down-regulated in malignant transformation and tumor progression. Genomic copy number loss and epigenetic silencing, respectively, may account for the down-regulation of ≈15% and at least ≈36% of miRNAs in advanced ovarian tumors and miRNA down-regulation contributes to a genome-wide transcriptional deregulation. Last, eight miRNAs located in the chromosome 14 miRNA cluster (Dlk1-Gtl2 domain) were identified as potential tumor suppressor genes. Therefore, our results suggest that miRNAs may offer new biomarkers and therapeutic targets in epithelial ovarian cancer.


Cancer Research | 2005

Expression Profiling of Serous Low Malignant Potential, Low-Grade, and High-Grade Tumors of the Ovary

Tomas Bonome; Ji Young Lee; Dong Choon Park; Mike Radonovich; Cindy Pise-Masison; John N. Brady; Ginger J. Gardner; Ke Hao; Wing Hung Wong; J. Carl Barrett; Karen H. Lu; Anil K. Sood; David M. Gershenson; Samuel C. Mok; Michael J. Birrer

Papillary serous low malignant potential (LMP) tumors are characterized by malignant features and metastatic potential yet display a benign clinical course. The role of LMP tumors in the development of invasive epithelial cancer of the ovary is not clearly defined. The aim of this study is to determine the relationships among LMP tumors and invasive ovarian cancers and identify genes contributing to their phenotypes. Affymetrix U133 Plus 2.0 microarrays (Santa Clara, CA) were used to interrogate 80 microdissected serous LMP tumors and invasive ovarian malignancies along with 10 ovarian surface epithelium (OSE) brushings. Gene expression profiles for each tumor class were used to complete unsupervised hierarchical clustering analyses and identify differentially expressed genes contributing to these associations. Unsupervised hierarchical clustering analysis revealed a distinct separation between clusters containing borderline and high-grade lesions. The majority of low-grade tumors clustered with LMP tumors. Comparing OSE with high-grade and LMP expression profiles revealed enhanced expression of genes linked to cell proliferation, chromosomal instability, and epigenetic silencing in high-grade cancers, whereas LMP tumors displayed activated p53 signaling. The expression profiles of LMP, low-grade, and high-grade papillary serous ovarian carcinomas suggest that LMP tumors are distinct from high-grade cancers; however, they are remarkably similar to low-grade cancers. Prominent expression of p53 pathway members may play an important role in the LMP tumor phenotype.


Journal of Biological Chemistry | 2000

Ras Uses the Novel Tumor Suppressor RASSF1 as an Effector to Mediate Apoptosis

Michele D. Vos; Chad A. Ellis; Aaron Bell; Michael J. Birrer; Geoffrey J. Clark

Although activated Ras proteins are usually associated with driving growth and transformation, they may also induce senescence, apoptosis, and terminal differentiation. The subversion of these anti-neoplastic effects during Ras-dependent tumor development may be as important as the acquisition of the pro-neoplastic effects. None of the currently identified potential Ras effector proteins can satisfactorily explain the apoptotic action of Ras. Consequently, we have sought to identify novel Ras effectors that may be responsible for apoptosis induction. By examining the EST data base, we identified a potential Ras association domain in the tumor suppressor RASSF1. We now show that RASSF1 binds Ras in a GTP-dependent manner, both in vivo and directlyin vitro. Moreover, activated Ras enhances and dominant negative Ras inhibits the cell death induced by transient transfection of RASSF1 into 293-T cells. This cell death appears to be apoptotic in nature, as RASSF1-transfected 293-T cells exhibit membrane blebbing and can be rescued by the addition of a caspase inhibitor. Thus, the RASSF1 tumor suppressor may serve as a novel Ras effector that mediates the apoptotic effects of oncogenic Ras.


Cancer Cell | 2010

Regulation of Tumor Angiogenesis by EZH2

Chunhua Lu; Hee Dong Han; Lingegowda S. Mangala; Rouba Ali-Fehmi; Christopher S. Newton; Laurent Ozbun; Guillermo N. Armaiz-Pena; Wei Hu; Rebecca L. Stone; Adnan R. Munkarah; Murali Ravoori; Mian M.K. Shahzad; Jeong Won Lee; Edna Mora; Robert R. Langley; Amy R. Carroll; Koji Matsuo; Whitney A. Spannuth; Rosemarie Schmandt; Nicholas B. Jennings; Blake W. Goodman; Robert B. Jaffe; Alpa M. Nick; Hye Sun Kim; Eylem Güven; Ya Huey Chen; Long Yuan Li; Ming Chuan Hsu; Robert L. Coleman; George A. Calin

Although VEGF-targeted therapies are showing promise, new angiogenesis targets are needed to make additional gains. Here, we show that increased Zeste homolog 2 (EZH2) expression in either tumor cells or in tumor vasculature is predictive of poor clinical outcome. The increase in endothelial EZH2 is a direct result of VEGF stimulation by a paracrine circuit that promotes angiogenesis by methylating and silencing vasohibin1 (vash1). Ezh2 silencing in the tumor-associated endothelial cells inhibited angiogenesis mediated by reactivation of VASH1, and reduced ovarian cancer growth, which is further enhanced in combination with ezh2 silencing in tumor cells. Collectively, these data support the potential for targeting ezh2 as an important therapeutic approach.


Lancet Oncology | 2014

Combination cediranib and olaparib versus olaparib alone for women with recurrent platinum-sensitive ovarian cancer: a randomised phase 2 study

Joyce Liu; William T. Barry; Michael J. Birrer; Jung-Min Lee; Ronald J. Buckanovich; Gini F. Fleming; B.J. Rimel; Mary K. Buss; Sreenivasa Nattam; Jean A. Hurteau; Weixiu Luo; Philippa Quy; Christin Whalen; Lisa Obermayer; Hang Lee; Elise C. Kohn; S. Percy Ivy; Ursula A. Matulonis

BACKGROUND Olaparib is a poly(ADP-ribose) polymerase inhibitor and cediranib is an anti-angiogenic agent with activity against VEGF receptor (VEGFR) 1, VEGFR2, and VEGFR3. Both oral agents have antitumour activity in women with recurrent ovarian cancer, and their combination was active and had manageable toxicities in a phase 1 trial. We investigated whether this combination could improve progression-free survival (PFS) compared with olaparib monotherapy in women with recurrent platinum-sensitive ovarian cancer. METHODS In our randomised, open-label, phase 2 study, we recruited women (aged ≥18 years) who had measurable platinum-sensitive, relapsed, high-grade serous or endometrioid ovarian, fallopian tube, or primary peritoneal cancer, or those with deleterious germline BRCA1/2 mutations from nine participating US academic medical centres. We randomly allocated participants (1:1) according to permuted blocks, stratified by germline BRCA status and previous anti-angiogenic therapy, to receive olaparib capsules 400 mg twice daily or the combination at the recommended phase 2 dose of cediranib 30 mg daily and olaparib capsules 200 mg twice daily. The primary endpoint was progression-free survival analysed in the intention-to-treat population. The phase 2 trial is no longer accruing patients. An interim analysis was conducted in November, 2013, after 50% of expected events had occurred and efficacy results were unmasked. The primary analysis was performed on March 31, 2014, after 47 events (66% of those expected). The trial is registered with ClinicalTrials.gov, number NCT01116648. FINDINGS Between Oct 26, 2011, and June 3, 2013, we randomly allocated 46 women to receive olaparib alone and 44 to receive the combination of olaparib and cediranib. Median PFS was 17·7 months (95% CI 14·7-not reached) for the women treated with cediranib plus olaparib compared with 9·0 months (95% CI 5·7-16·5) for those treated with olaparib monotherapy (hazard ratio 0·42, 95% CI 0·23-0·76; p=0·005). Grade 3 and 4 adverse events were more common with combination therapy than with monotherapy, including fatigue (12 patients in the cediranib plus olaparib group vs five patients in the olaparib monotherapy group), diarrhoea (ten vs none), and hypertension (18 vs none). INTERPRETATION Cediranib plus olaparib seems to improve PFS in women with recurrent platinum-sensitive high-grade serous or endometrioid ovarian cancer, and warrants study in a phase 3 trial. The side-effect profile suggests such investigations should include assessments of quality of life and patient-reported outcomes to understand the effects of a continuing oral regimen with that of intermittent chemotherapy. FUNDING American Recovery and Reinvestment Act grant from the National Institutes of Health (NIH) (3 U01 CA062490-16S2); Intramural Program of the Center for Cancer Research; and the Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH.


Journal of Biological Chemistry | 1997

The Jun Kinase/Stress-activated Protein Kinase Pathway Functions to Regulate DNA Repair and Inhibition of the Pathway Sensitizes Tumor Cells to Cisplatin

Olga Potapova; Ali Haghighi; Frédéric Bost; Chaoting Liu; Michael J. Birrer; Ruth A. Gjerset; Dan Mercola

We have studied the role of Jun/stress-activated protein kinase (JNK/SAPK) pathway in DNA repair and cisplatin resistance in T98G glioblastoma cells. JUN/SAPK is activated by DNA damage and phosphorylates serines 63 and 73 in the N-terminal domain of c-Jun, which is known to increase its transactivation properties. We show that treatment of T98G glioblastoma cells with cisplatin but not the transplatin isomer activates JNK/SAPK about 10-fold. T98G cells, which are highly resistent to cisplatin (IC50 = 140 ± 13 μm), modified to express a nonphosphorylatable dominant negative c-Jun (termed dnJun) exhibit decreased viability following treatment with cisplatin, but not transplatin, in proportion (r Pearson = 0.98) to the level of dnJun expressed leading to a 7-fold decreased IC50. Similar effects are observed in U87 cells, PC-3 cells, and MCF-7 cells, as well as in T98G cells modified to express TAM-67, a known inhibitor of c-Jun function. In contrast, no sensitization effect was observed in cells modified to express wild-type c-Jun. Furthermore, through quantitative polymerase chain reaction-stop assays, we show that dnJun expressing cells were inhibited in repair of cisplatin adducts (p = 0.55), whereas repair is readily detectable (p = 0.003) in parental cells. These observations indicate that the JNK/SAPK pathway is activated by cisplatin-induced DNA damage and that this response is required for DNA repair and viability following cisplatin treatment. Regulation of DNA repair following genotoxic stress may be a normal physiological role of the JNK/SAPK pathway.


Cancer Research | 2008

A gene signature predicting for survival in suboptimally debulked patients with ovarian cancer.

Tomas Bonome; Douglas A. Levine; Joanna H. Shih; Mike Randonovich; Cynthia A. Pise-Masison; Faina Bogomolniy; Laurent Ozbun; John N. Brady; J. Carl Barrett; Jeffrey E. Boyd; Michael J. Birrer

Despite the existence of morphologically indistinguishable disease, patients with advanced ovarian tumors display a broad range of survival end points. We hypothesize that gene expression profiling can identify a prognostic signature accounting for these distinct clinical outcomes. To resolve survival-associated loci, gene expression profiling was completed for an extensive set of 185 (90 optimal/95 suboptimal) primary ovarian tumors using the Affymetrix human U133A microarray. Cox regression analysis identified probe sets associated with survival in optimally and suboptimally debulked tumor sets at a P value of <0.01. Leave-one-out cross-validation was applied to each tumor cohort and confirmed by a permutation test. External validation was conducted by applying the gene signature to a publicly available array database of expression profiles of advanced stage suboptimally debulked tumors. The prognostic signature successfully classified the tumors according to survival for suboptimally (P = 0.0179) but not optimally debulked (P = 0.144) patients. The suboptimal gene signature was validated using the independent set of tumors (odds ratio, 8.75; P = 0.0146). To elucidate signaling events amenable to therapeutic intervention in suboptimally debulked patients, pathway analysis was completed for the top 57 survival-associated probe sets. For suboptimally debulked patients, confirmation of the predictive gene signature supports the existence of a clinically relevant predictor, as well as the possibility of novel therapeutic opportunities. Ultimately, the prognostic classifier defined for suboptimally debulked tumors may aid in the classification and enhancement of patient outcome for this high-risk population.


Journal of Immunology | 2000

TNF-α Gene Expression in Macrophages: Regulation by NF-κB Is Independent of c-Jun or C/EBPβ

Hongtao Liu; Prodromos Sidiropoulos; Guobin Song; Lisa J. Pagliari; Michael J. Birrer; Bernd Stein; Josef Anrather; Richard M. Pope

The interaction of transcription factors is critical in the regulation of gene expression. This study characterized the mechanism by which NF-κB family members interact to regulate the human TNF-α gene. A 120-bp TNF-α promoter-reporter, possessing binding sites for NF-κB (κB3), C/EBPβ (CCAAT/enhancer binding protein β), and c-Jun, was activated by cotransfection of plasmids expressing the wild-type version of each of these transcription factors. Employing adenoviral vectors, dominant-negative versions of NF-κB p65, and c-Jun, but not C/EBPβ, suppressed (p < 0.05–0.001) LPS-induced TNF-α secretion in primary human macrophages. Following LPS stimulation, NF-κB p50/p65 heterodimers bound to the κB3 site and c-Jun to the −103 AP-1 site of the TNF-α promoter. By transient transfection, NF-κB p65 and p50 synergistically activated the TNF-α promoter. In contrast, no synergy was observed between NF-κB p65, with or without NF-κB p50, and c-Jun or C/EBPβ, even in the presence of the coactivator p300. The contribution of the upstream κB binding sites was also examined. Following LPS stimulation, the κB1 site bound both NF-κB p50/p65 heterodimers and p50 homodimers. The binding by NF-κB p50 homodimers to the κB1, but not to the κB3, site contributed to the inability of macrophages to respond to a second LPS challenge. In summary, adjacent κB3 and AP-1 sites in the human TNF-α promoter contribute independently to LPS-induced activation. Although both the κB1 and κB3 sites bound transcriptionally active NF-κB p50/p65 heterodimers, only the κB1 site contributed to down-regulation by NF-κB p50 homodimers.

Collaboration


Dive into the Michael J. Birrer's collaboration.

Top Co-Authors

Avatar

Samuel C. Mok

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John H. Farley

St. Joseph's Hospital and Medical Center

View shared research outputs
Top Co-Authors

Avatar

Tomas Bonome

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kwong Kwok Wong

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vinod Vathipadiekal

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge