Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael J. Carr is active.

Publication


Featured researches published by Michael J. Carr.


Contributions to Mineralogy and Petrology | 1990

Incompatible element and isotopic evidence for tectonic control of source mixing and melt extraction along the Central American arc

Michael J. Carr; Mark D. Feigenson; E. A. Bennett

The Sr and Nd isotopic ratios of Central American volcanics can be described by the mixing of four components, marine sediment from DSDP Site 495, MORB-source mantle (DM), EMORB-source mantle (EM), and continental crust. Most of the isotopic data define a trend between EM and a modified mantle (MM) formed as a mixture of DM and less than 0.5% marine sediment, or fluid derived there from. The MM to EM trend is equally apparent in the incompatible-element data and is most clearly seen in a Ba/La versus La/Yb plot. A hyperbolic trend connects high Ba/La and low La/Yb at the MM end of the trend to low Ba/La and high La/Yb at the EM end. Smooth regional variations in incompatible-element and isotopic ratios correlate with the dip of the subducted slab beneath the volcanic front and the volume of lava erupted during the last 100,000 years (volcanic flux). Steep dip and low flux characterize the MM end-member and shallow dip and high flux characterize the EM end-member. The simplest model to explain the linked tectonic and geochemical data involves melting in the wedge by two distinct mechanisms, followed by mixing between the two magmas. In one case, EM magma is generated by decompression of EM plus DM asthenosphere, which is drawn in and up toward the wedge corner. EM mantle is preferentially melted to small degrees because of the presence of low melting components. The second melt is formed by release of fluid from the subducted slab beneath the volcanic front to form MM magma. Mixing between EM and MM magmas is controlled by subduction angle, which facilitates delivery of EM magma to the volcanic front at low-dip angles and impedes it at steep-dip angles.


Contributions to Mineralogy and Petrology | 1983

Density constraints on the formation of the continental Moho and crust

Claude Herzberg; W. S. Fyfe; Michael J. Carr

The densities of mantle magmas such as MORB-like tholeiites, picrites, and komatiites at 10 kilobars are greater than densities for diorites, quartz diorites, granodiorites, and granites which dominate the continental crust. Because of these density relations primary magmas from the mantle will tend to underplate the base of the continental crust. Magmas ranging in composition from tholeiites which are more evolved than MORB to andesite can have densities which are less than rocks of the continental crust at 10 kilobars, particularly if they have high water contents. The continental crust can thus be a density filter through which only evolved magmas containing H2O may pass. This explains why primary magmas from the mantle such as the picrites are so rare. Both the over-accretion (i.e., Moho penetration) and the under-accretion (i.e., Moho underplating) of magmas can readily explain complexities in the lithological characteristics of the continental Moho and lower crust. Underplating of the continental crust by dense magmas may perturb the geotherm to values which are characteristic of those in granulite to greenschist facies metamorphic sequences in orogenic belts. An Archean continental crust floating on top of a magma flood or ocean of tholeiite to komatiite could have undergone a major cleansing process; dense blocks of peridotite, greenstone, and high density sediments such as iron formation could have been returned to the mantle, granites sweated to high crustal levels, and a high grade felsic basement residue established.


Journal of Volcanology and Geothermal Research | 1984

Symmetrical and segmented variation of physical and geochemical characteristics of the central american volcanic front

Michael J. Carr

Abstract The regional variation of physical and geochemical characteristics of Central American volcanoes occurs in two fundamentally different patterns. The first pattern is symmetrical about Nicaragua. Crustal thickness, silica contents of mafic lavas and volcanic edifice heights are lowest in Nicaragua and increase smoothly toward Costa Rica to the south and Guatemala to the north. Magma density is maximum in Nicaragua and decreases smoothly outward. The regional variation in crustal thickness is just enough so that magma densities, calculated at appropriate Moho pressures, are the same at the base of the crust throughout the region. This is consistent with magma ponding at the base of the crust. The bulk compositions of Central American basalts show the same symmetrical variation. Suites of Nicaraguan basalts plotted in pseudo-ternary CMAS projections indicate large olivine and plagioclase primary-phase volumes. Toward Costa Rica and Guatemala the olivine and plagioclase fields inferred from suites of basaltic lavas are smaller, which is consistent with fractionation at increasing depth. The second pattern is the segmentation of the volcanic front and the plate margin in general. The segmentation strongly affects the spacing and size of volcanic centers. At segment boundaries volcanic centers are generally small and unusually widely spaced. Toward segment interiors volcano spacing and size increase systematically. The LIL element contents of lavas strongly reflect this pattern. For lavas with similar silica contents the larger the volcano, the higher the LIL element contents. The relationships between segmentation, volcano spacing and volcano size are compatible with diapiric rise of magma accumulated in narrow ribbons near the upper surface of the underthrust slab. The relationship between volcano volume and LIL element content is qualitatively in agreement with an open-system fractionation model.


Geochimica et Cosmochimica Acta | 1994

Boron geochemistry of the Central American Volcanic Arc: Constraints on the genesis of subduction-related magmas

William P. Leeman; Michael J. Carr; Julie Morris

Boron contents were measured in representative Quaternary lavas from the Central American Volcanic Arc to evaluate along-strike variations in subduction processes. Despite the significant range in B concentrations (~2–37 ppm) in the mafic lavas, B/La ratios vary in a systematic fashion along the arc; higher values (> 1) are typical between Guatemala and northern Costa Rica, whereas low values (most <0.5) typify central Costa Rica and western Panama. B/La is highly correlated with 10Be/9Be (r2 = 0.94, excluding one sample) and appears to be a useful indicator of subduction contributions to the magma sources. If enrichments of both B and 10Be are proportional to the flux of subducted sediment, along-strike variations in B/La suggest at least a twofold variation in this flux with maximum values below western Nicaragua and minimum values below Costa Rica and western Panama where the Cocos Ridge is being subducted. These data may also reflect significant differences in thermal state of the descending slab, which in turn differentially affects release patterns of fluids and fluid-mobile trace elements, and possibly melting processes beneath different parts of the arc. The following scenario is suggested to explain the geochemical results. Beneath the northwestern part of the arc steep subduction of older, relatively cold slab favors more efficient subduction of fluid components to depths beneath the volcanic front. The released fluids carry fluid-mobile elements to the overlying mantle, which upon melting produces calcalkalic magmas. Shallow subduction of warmer slab beneath the southeastern part of the arc favors shallow release of fluids and limits fluid-related metasomatism of sub-arc mantle beneath the volcanic front. Under such conditions, B/La and Ba/La ratios in the sub-arc mantle vary little from values seen in oceanic island basalts. Magmas in this part of the arc nevertheless display the highest La/Yb and lowest Ba/La and B/La ratios, which are consistent with prior light rare-earth-element enrichment in the source, significantly lower degrees of melting, or a combination thereof. Because some of the largest volcanoes occur in Costa Rica, and magma flux there is nearly an order of magnitude higher than elsewhere in the arc, source enrichment is considered to be the more plausible explanation. It is proposed that Quaternary magma production below Costa Rica involved lithospheric sources containing trapped or stored melt components, but this enrichment process is unlikely to have involved typical arc magmas or subduction fluids because we see no B-enrichment.


Geochemistry Geophysics Geosystems | 2005

Oxygen isotope constraints on the sources of Central American arc lavas

John M. Eiler; Michael J. Carr; Mark K. Reagan; Edward M. Stolper

Oxygen-isotope ratios of olivine and plagioclase phenocrysts in basalts and basaltic andesites from the Central American arc vary systematically with location, from a minimum δ18Oolivine value of 4.6 (below the range typical of terrestrial basalts) in Nicaragua near the center of the arc to a maximum δ18Oolivine value of 5.7 (above the typical range) in Guatemala near the northwest end of the arc. These oxygen-isotope variations correlate with major and trace element abundances and with Sr and Nd isotope compositions of host lavas, defining trends that suggest variations in δ18O reflect slab contributions to the mantle sources of these lavas. These trends can be explained by a model in which both a low-δ18O, water-rich component and a high-δ18O, water-poor component are extracted from the subducting Cocos slab and flux melting in the overlying mantle wedge. The first of these components dominates slab fluxes beneath the center of the arc and is the principal control on the extent of melting of the mantle wedge (which is highest in the center of the arc); the second component dominates slab fluxes beneath the northwestern margin of the arc. Fluxes of both components are small or negligible beneath the southeastern margin of the arc. We suggest that the low-δ18O component is a solute-rich aqueous fluid produced by dehydration of hydrothermally altered rocks deep within the Cocos slab (perhaps serpentinites produced in deep normal faults offshore of Nicaragua) and that the high-δ18O component is a partial melt of subducted sediment on top of the plate.


Geophysical monograph | 2013

Volcanism and Geochemistry in Central America: Progress and Problems

Michael J. Carr; Mark D. Feigenson; Lina C. Patino; James A. Walker

Most Central American volcanoes occur in an impressive volcanic front that trends parallel to the strike of the subducting Cocos Plate. The volcanic front is a chain, made of right-stepping, linear segments, 100 to 300 Km in length. Volcanoes cluster into centers, whose spacing is random but averages about 27 Km. These closely spaced, easily accessible volcanic centers allow mapping of geochemical variations along the volcanic front. Abundant back-arc volcanoes in southeast Guatemala and central Honduras allow two cross-arc transects. Several element and isotope ratios (e.g. Ba/La, U/Th, B/La, 10 Be/ 9 Be, 87 Sr/ 86 Sr) that are thought to signal subducted marine sediments or altered MORB consistently define a chevron pattern along the arc, with its maximum in Nicaragua. Ba/La, a particularly sensitive signal, is 130 at the maximum in Nicaragua but decreases out on the limbs to 40 in Guatemala and 20 in Costa Rica, which is just above the nominal mantle value of 15. This high amplitude regional variation, roughly symmetrical about Nicaragua, contrasts with the near constancy, or small gradient, in several plate tectonic parameters such as convergence rate, age of the subducting Cocos Plate, and thickness and type of subducted sediment. The large geochemical changes over relatively short distances make Central America an important margin for seeking the tectonic causes of geochemical variations; the regional variation has both a high amplitude and structure, including flat areas and gradients. The geochemical database continues to improve and is already adequate to compare to tectonic models with length scales of 100 Km or longer.


Geology | 1986

Pliocene near-trench magmatism in southern Chile: A possible manifestation of ridge collision

Randall D. Forsythe; Eric P. Nelson; Michael J. Carr; Margaret E. Kaeding; Miguel Herve; Constantino Mpodozis; Jose Manuel Soffia; Salvador Harambour

Eight shallow-level intrusions and an ophiolite complex have recently been discovered in a remote region along the Pacific coast of southern Chile known as the Taitao Peninsula. The magmatic rocks are found only 10 to 15 km from the buried extension of the Peru-Chile Trench. The ophiolite body includes serpentinized ultramaflc rocks, gabbro, dikes, and an interbedded sequence of volcanic and marine sedimentary rocks. More regionally distributed granodiorite plutons and porphyritic stocks and sills intrude pre-Late Jurassic basement as well as Tertiary marine sequences of the South American forearc. K-Ar ages of 3.5 to 4.0 Ma of the ophiolite and other intrusions suggest that these rocks represent a short-lived pulse of Pliocene magmatism. Directly seaward of the Taitao Peninsula a segment of the Chile Rise bounded by the Tres Monies and Taitao fracture zones collided with the Chilean forearc and was subducted about 2.5 to 4.0 Ma. Because of this good spatial and temporal correlation, the magmatic activity of the Taitao Peninsula is likely to be a direct result of ridge subduction.


Geochemistry Geophysics Geosystems | 2007

Element fluxes from the volcanic front of Nicaragua and Costa Rica

Michael J. Carr; Ian Saginor; Guillermo E. Alvarado; Louise L. Bolge; F. N. Lindsay; Kathy Milidakis; Brent D. Turrin; Mark D. Feigenson; Carl C. Swisher

10 10 kg/m/Myr) and central Costa Rica (2.4 � 10 10 kg/m/Myr) is greatly reduced from previous estimates and now within the range of error estimates. We estimate the subducted component of flux for Cs, Rb, Ba, Th, U, K, La, Pb, and Sr by subtracting estimated mantle-derived contributions from the total element flux. An incompatible element-rich OIB source for the Cordillera Central segment in Costa Rica makes the subducted element flux there highly sensitive to small changes in the modeled mantle-derived contribution. For the other three segments studied, the estimated errors in concentrations of highly enriched, subductionderived elements (Cs, Ba, K, and Pb) are less than 26%. Averaged over the time of the current episode of volcanism, the subduction-derived fluxes of Cs, Ba, K, Pb, and Sr are not significantly different among the four segments of the Central American volcanic front in Nicaragua and Costa Rica. The subductionderived fluxes of Th and La appear to increase to the SE across Nicaragua and Costa Rica, but the estimated errors in their subduction-derived concentrations are very high, making this variation questionable. The lack of change in the fluxes of Cs, Ba, K, Pb, and Sr argues that the well-defined regional variation in Ba/La is the result of changes in the mode or mechanics of fluid delivery into the mantle wedge, not the total amounts of fluids released from the slab. Concentrated or focused fluids in Nicaragua lead to high degrees of melting. Diffuse fluids in Costa Rica cause lower degrees of melting. Components: 12,742 words, 11 figures, 5 tables.


Geochemistry Geophysics Geosystems | 2009

Galapagos‐OIB signature in southern Central America: Mantle refertilization by arc–hot spot interaction

Esteban Gazel; Michael J. Carr; Kaj Hoernle; Mark D. Feigenson; David W. Szymanski; Folkmar Hauff; Paul van den Bogaard

[1] Although most Central American magmas have a typical arc geochemical signature, magmas in southern Central America (central Costa Rica and Panama) have isotopic and trace element compositions with an ocean island basalt (OIB) affinity, similar to the Galapagos-OIB lavas (e.g., Ba/La 10, 206Pb/204Pb > 18.8). Our new data for Costa Rica suggest that this signature, unusual for a convergent margin, has a relatively recent origin (Late Miocene ∼6 Ma). We also show that there was a transition from typical arc magmas (analogous to the modern Nicaraguan volcanic front) to OIB-like magmas similar to the Galapagos hot spot. The geographic distribution of the Galapagos signature in recent lavas from southern Central America is present landward from the subduction of the Galapagos hot spot tracks (the Seamount Province and the Cocos/Coiba Ridge) at the Middle American Trench. The higher Pb isotopic ratios, relatively lower Sr and Nd isotopic ratios, and enriched incompatible-element signature of central Costa Rican magmas can be explained by arc–hot spot interaction. The isotopic ratios of central Costa Rican lavas require the subducting Seamount Province (Northern Galapagos Domain) component, whereas the isotopic ratios of the adakites and alkaline basalts from southern Costa Rica and Panama are in the geochemical range of the subducting Cocos/Coiba Ridge (Central Galapagos Domain). Geological and geochemical evidence collectively indicate that the relatively recent Galapagos-OIB signature in southern Central America represents a geochemical signal from subducting Galapagos hot spot tracks, which started to collide with the margin ∼8 Ma ago. The Galapagos hot spot contribution decreases systematically along the volcanic front from central Costa Rica to NW Nicaragua.


Journal of Volcanology and Geothermal Research | 2003

Flux versus decompression melting at stratovolcanoes in southeastern Guatemala

B.I Cameron; James A. Walker; Michael J. Carr; Lina C. Patino; O Matı́as; Mark D. Feigenson

Abstract The major and trace element geochemistry of lavas erupted from four volcanic front (VF) stratovolcanoes in southeastern Guatemala show differences in the relative importance of flux and decompression melting in a continental arc setting. The VF stratovolcanoes exhibit a wide compositional range from basalt to dacite, although modern Pacaya erupts basaltic lavas. The VF basalts have relatively low MgO contents and plot outside the field of primary arc magmas defined by melting experiments on hydrous peridotite. After subtracting the effects of the fractionation, assimilation, and alteration of some VF lavas, separate partial melting and mixing trends were identified for Agua–Pacaya and Tecuamburro–Moyuta. The distinct chemical signatures of the hemipelagic and carbonate sediments subducted off Guatemala provide constraints on material transfer processes that occurred between the slab and mantle wedge. Model fluids and melts from the subducted slab were calculated using recently published mineral–aqueous fluid partition coefficients. Wide separation of the model fluid and melt compositions on a U/La versus Ba/Th diagram creates diagnostic mixing curves with an enriched mid-ocean ridge basalt source. Fluid from mature ocean crust has high U/La, fluid from carbonate sediment has high Ba/Th, and fluid and melt from hemipelagic sediments have both high U/La and Ba/Th. In a simple single-stage model, a mantle metasomatized by fluid originating largely from the oceanic crust with only minor sediment fluid contributions best explains the overall large ion lithophile element composition of the VF lavas. (Th/Rb)N ratios of ∼1 in the VF lavas from southeastern Guatemala require a component of sediment melting. Therefore, a more realistic two-stage model to describe the Guatemalan arc data involves an initial hemipelagic sediment melt input to the wedge followed by minor fluid additions from the oceanic crust or sediments. Correlation between measures of slab input and extent of melting in the older VF lavas from Tecuamburro and Moyuta favors flux-dominated melting near the base of the mantle wedge. In sharp contrast, the lack of a relationship between slab additions and melting in younger lavas from Agua and Pacaya volcanoes implies a significant role for decompression melting closer to the top of the wedge. In this melting scenario, the rate of crustal extension determines the extent of melting.

Collaboration


Dive into the Michael J. Carr's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James A. Walker

Northern Illinois University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lina C. Patino

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Guillermo E. Alvarado

Instituto Costarricense de Electricidad

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge