Michael J. Choate
United States Geological Survey
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael J. Choate.
Remote Sensing | 2014
James C. Storey; Michael J. Choate; Kenton Lee
The Landsat 8 spacecraft was launched on 11 February 2013 carrying the Operational Land Imager (OLI) payload for moderate resolution imaging in the visible, near infrared (NIR), and short-wave infrared (SWIR) spectral bands. During the 90-day commissioning period following launch, several on-orbit geometric calibration activities were performed to refine the prelaunch calibration parameters. The results of these calibration activities were subsequently used to measure geometric performance characteristics in order to verify the OLI geometric requirements. Three types of geometric calibrations were performed including: (1) updating the OLI-to-spacecraft alignment knowledge; (2) refining the alignment of the sub-images from the multiple OLI sensor chips; and (3) refining the alignment of the OLI spectral bands. The aspects of geometric performance that were measured and verified included: (1) geolocation accuracy with terrain correction, but without ground control (L1Gt); (2) Level 1 product accuracy with terrain correction and ground control (L1T); (3) band-to-band registration accuracy; and (4) multi-temporal image-to-image registration accuracy. Using the results of the on-orbit calibration update, all aspects of geometric performance were shown to meet or exceed system requirements.
IEEE Transactions on Geoscience and Remote Sensing | 2004
James C. Storey; Michael J. Choate; David J. Meyer
The Earth Observing 1 (EO-1) Advanced Land Imager (ALI) demonstrates technology applicable to a successor system to the Landsat Thematic Mapper series. A study of the geometric performance characteristics of the ALI was conducted under the auspices of the EO-1 Science Validation Team. This study evaluated ALI performance with respect to absolute pointing knowledge, focal plane sensor chip assembly alignment, and band-to-band registration for purposes of comparing this new technology to the heritage Landsat systems. On-orbit geometric calibration procedures were developed that allowed the generation of ALI geometrically corrected products that compare favorably with their Landsat 7 counterparts with respect to absolute geodetic accuracy, internal image geometry, and band registration.
IEEE Transactions on Geoscience and Remote Sensing | 2004
James C. Storey; Michael J. Choate
The Landsat-5 Thematic Mapper (TM) scan mirror was switched from its primary operating mode to a backup mode in early 2002 in order to overcome internal synchronization problems arising from long-term wear of the scan mirror mechanism. The backup bumper mode of operation removes the constraints on scan start and stop angles enforced in the primary scan angle monitor operating mode, requiring additional geometric calibration effort to monitor the active scan angles. It also eliminates scan timing telemetry used to correct the TM scan geometry. These differences require changes to the geometric correction algorithms used to process TM data. A mathematical model of the scan mirrors behavior when operating in bumper mode was developed. This model includes a set of key timing parameters that characterize the time-varying behavior of the scan mirror bumpers. To simplify the implementation of the bumper-mode model, the bumper timing parameters were recast in terms of the calibration and telemetry data items used to process normal TM imagery. The resulting geometric performance, evaluated over 18 months of bumper-mode operations, though slightly reduced from that achievable in the primary operating mode, is still within the Landsat specifications when the data are processed with the most up-to-date calibration parameters.
IEEE Transactions on Geoscience and Remote Sensing | 2009
Gyanesh Chander; Sebastien Saunier; Michael J. Choate; Pasquale L. Scaramuzza
Satellite data from the Surrey Satellite Technology Limited (SSTL) United Kingdom (UK) Disaster Monitoring Constellation (DMC) were assessed for geometric and radiometric quality. The UK-DMC Surrey Linear Imager 6 (SLIM-6) sensor has a 32-m spatial resolution and a ground swath width of 640 km. The UK-DMC SLIM-6 design consists of a three-band imager with green, red, and near-infrared bands that are set to similar bandpass as Landsat bands 2, 3, and 4. The UK-DMC data consisted of imagery registered to Landsat orthorectified imagery produced from the GeoCover program. Relief displacements within the UK-DMC SLIM-6 imagery were accounted for by using global 1-km digital elevation models available through the Global Land One-km Base Elevation (GLOBE) Project. Positional accuracy and relative band-to-band accuracy were measured. Positional accuracy of the UK-DMC SLIM-6 imagery was assessed by measuring the imagery against digital orthophoto quadrangles (DOQs), which are designed to meet national map accuracy standards at 1 : 24 000 scales; this corresponds to a horizontal root-mean-square accuracy of about 6 m. The UK-DMC SLIM-6 images were typically registered to within 1.0-1.5 pixels to the DOQ mosaic images. Several radiometric artifacts like striping, coherent noise, and flat detector were discovered and studied. Indications are that the SSTL UK-DMC SLIM-6 data have few artifacts and calibration challenges, and these can be adjusted or corrected via calibration and processing algorithms. The cross-calibration of the UK-DMC SLIM-6 and Landsat 7 Enhanced Thematic Mapper Plus was performed using image statistics derived from large common areas observed by the two sensors.
Algorithms for multispectral, hyperspectral, and ultraspectral imagery. Conference | 2000
James C. Storey; Michael J. Choate
The Landsat 7 Image Assessment System was developed to characterize and calibrate the radiometric and geometric performance of the Landsat 7 Enhanced Thematic Mapper Pius (ETM+) instrument. Algorithms and software assess the geometric performance of the Landsat 7 spacecraft and ETM+ sensor system and perform geometric calibration by estimating sensor and spacecraft geometric parameters. Following the initial on-orbit calibration, performed during the Landsat 7 on- orbit initialization and verification period, all geometric performance goals were met. Geometric characterization and calibration activities will continue for the life of the Landsat 7 mission.
Remote Sensing | 2014
James C. Storey; Michael J. Choate; Donald Moe
The Landsat 8 spacecraft was launched on 11 February 2013 carrying two imaging payloads: the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). The TIRS instrument employs a refractive telescope design that is opaque to visible wavelengths making prelaunch geometric characterization challenging. TIRS geometric calibration thus relied heavily on on-orbit measurements. Since the two Landsat 8 payloads are complementary and generate combined Level 1 data products, the TIRS geometric performance requirements emphasize the co-alignment of the OLI and TIRS instrument fields of view and the registration of the OLI reflective bands to the TIRS long-wave infrared emissive bands. The TIRS on-orbit calibration procedures include measuring the TIRS-to-OLI alignment, refining the alignment of the three TIRS sensor chips, and ensuring the alignment of the two TIRS spectral bands. The two key TIRS performance metrics are the OLI reflective to TIRS emissive band registration accuracy, and the registration accuracy between the TIRS thermal bands. The on-orbit calibration campaign conducted during the commissioning period provided an accurate TIRS geometric model that enabled TIRS Level 1 data to meet all geometric accuracy requirements. Seasonal variations in TIRS-to-OLI alignment have led to several small calibration parameter adjustments since commissioning.
Photogrammetric Engineering and Remote Sensing | 2015
Rajagopalan Rengarajan; Aparajithan Sampath; James C. Storey; Michael J. Choate
Abstract The Global Land Survey (GLS) 2000 data were generated from Geocover™2000 data with the aim of producing a global data set of accuracy better than 25 m Root Mean Square Error (RMSE). An assessment and validation of accuracy of GLS 2000 data set, and its co-registration with Geocover™ 2000 data set is presented here. Since the availability of global data sets that have higher nominal accuracy than the GLS 2000 is a concern, the data sets were assessed in three tiers. In the first tier, the data were compared with the Geocover™2000 data. This comparison provided a means of localizing regions of higher differences. In the second tier, the GLS 2000 data were compared with systematically corrected Landsat-7 scenes that were obtained in a time period when the spacecraft pointing information was extremely accurate. These comparisons localize regions where the data are consistently off, which may indicate regions of higher errors. The third tier consisted of comparing the GLS 2000 data against higher accuracy reference data. The reference data were the Digital Ortho Quads over the United States, ortho-rectified SPOT data over Australia, and high accuracy check points obtained using triangulation bundle adjustment of Landsat-7 images over selected sites around the world. The study reveals that the geometric errors in Geocover™2000 data have been rectified in GLS 2000 data, and that the accuracy of GLS 2000 data can be expected to be better than 25 m RMSE for most of its constituent scenes.
Proceedings of SPIE | 2011
Esad Micijevic; Ron Morfitt; Michael J. Choate
The Landsat Data Continuity Mission (LDCM) is planning to launch the Landsat 8 satellite in December 2012, which continues an uninterrupted record of consistently calibrated globally acquired multispectral images of the Earth started in 1972. The satellite will carry two imaging sensors: the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). The OLI will provide visible, near-infrared and short-wave infrared data in nine spectral bands while the TIRS will acquire thermal infrared data in two bands. Both sensors have a pushbroom design and consequently, each has a large number of detectors to be characterized. Image and calibration data downlinked from the satellite will be processed by the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center using the Landsat 8 Image Assessment System (IAS), a component of the Ground System. In addition to extracting statistics from all Earth images acquired, the IAS will process and trend results from analysis of special calibration acquisitions, such as solar diffuser, lunar, shutter, night, lamp and blackbody data, and preselected calibration sites. The trended data will be systematically processed and analyzed, and calibration and characterization parameters will be updated using both automatic and customized manual tools. This paper describes the analysis tools and the system developed to monitor and characterize on-orbit performance and calibrate the Landsat 8 sensors and image data products.
Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI | 2000
Grant R. Mah; James E. Vogelmann; Michael J. Choate
There was a one-time opportunity to obtain nearly coincident coverage from both Landsat 5 and Landsat 7 as Landsat 7 drifted to its final orbital position during the initialization and verification phase following launch. During the underfly period, Landsat 7 Enhanced Thematic Mapper Plus (ETM+) data were collected using the U.S Landsat 7 ground station network and the solid-state recorder, while agreements were established with Space Imaging/EOSAT and various international ground stations to collect corresponding Landsat 5 Thematic Mapper (TM) data. Approximately 750 coincident scenes were collected during the underfly from 1-3 June 1999. Underfly data are intended to play a major role in developing cross-calibrations to bridge the results derived from historical Landsat 5 TM data with research performed with current Landsat 7 ETM+ data. The purpose of this paper is to provide an overview of the underfly experiment, and to provide some early comparative results between Landsat 5 and 7 data sets. Initial results indicate that products produced using TM and ETM+ data are very similar.
SPIE's International Symposium on Optical Engineering and Photonics in Aerospace Sensing | 1994
Dennis L. Helder; Michael J. Choate
Multispectral imaging instruments are often built in a pushbroom scanner configuration with focal planes consisting of large linear arrays containing up to several thousand detectors. Design considerations of such arrays often favor arrangements such that all even numbered detector elements are processed along a path that differs from all odd numbered detector elements. this can cause instrument-induced artifacts in the resulting imagery. Two techniques have been developed that attempt to attenuate this type of artifact. One is based on modeling the artifact as differences in detector bias. These differences are estimated in the spatial domain and corrections are applied. The second approach takes advantange of a convenient wavelet decomposition of the iamge that effectively isolates the artifact from image information. After appropriate filtering in wavelet space, artifacts in the reconstructed image are significantly reduces. These techniques have been applied to SPOT imagery with encouraging results.