Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael J. Davis is active.

Publication


Featured researches published by Michael J. Davis.


Nature | 2011

Detection of prokaryotic mRNA signifies microbial viability and promotes immunity

Leif E. Sander; Michael J. Davis; Mark V. Boekschoten; Derk Amsen; Christopher C. Dascher; Bernard Ryffel; Joel A. Swanson; Michael Müller; J. Magarian Blander

Live vaccines have long been known to trigger far more vigorous immune responses than their killed counterparts. This has been attributed to the ability of live microorganisms to replicate and express specialized virulence factors that facilitate invasion and infection of their hosts. However, protective immunization can often be achieved with a single injection of live, but not dead, attenuated microorganisms stripped of their virulence factors. Pathogen-associated molecular patterns (PAMPs), which are detected by the immune system, are present in both live and killed vaccines, indicating that certain poorly characterized aspects of live microorganisms, not incorporated in dead vaccines, are particularly effective at inducing protective immunity. Here we show that the mammalian innate immune system can directly sense microbial viability through detection of a special class of viability-associated PAMPs (vita-PAMPs). We identify prokaryotic messenger RNA as a vita-PAMP present only in viable bacteria, the recognition of which elicits a unique innate response and a robust adaptive antibody response. Notably, the innate response evoked by viability and prokaryotic mRNA was thus far considered to be reserved for pathogenic bacteria, but we show that even non-pathogenic bacteria in sterile tissues can trigger similar responses, provided that they are alive. Thus, the immune system actively gauges the infectious risk by searching PAMPs for signatures of microbial life and thus infectivity. Detection of vita-PAMPs triggers a state of alert not warranted for dead bacteria. Vaccine formulations that incorporate vita-PAMPs could thus combine the superior protection of live vaccines with the safety of dead vaccines.


Mbio | 2013

Macrophage M1/M2 Polarization Dynamically Adapts to Changes in Cytokine Microenvironments in Cryptococcus neoformans Infection

Michael J. Davis; Tiffany M. Tsang; Yafeng Qiu; Jeremy K. Dayrit; Joudeh B. Freij; Gary B. Huffnagle; Michal A. Olszewski

ABSTRACT The outcome of cryptococcal pneumonia correlates with local macrophage polarization status, as M1 and M2 polarization marks protective and nonprotective responses, respectively. Overall, pulmonary macrophage polarization status changes over time during a cryptococcal infection. This could have been caused by repolarization of individual macrophages or by a replacement of M2-polarized cells by new M1-polarized cells. To explore the ability of macrophages to change between polarization states, we conducted a series of experiments using in vitro macrophages. Coculture of macrophages with Cryptococcus neoformans resulted in development of a weak M1-like phenotype, with modestly increased inducible nitric oxide synthase (iNOS) but lacking interleukin 6 (IL-6) induction. The C. neoformans-induced M1-like polarization state was plastic, as macrophages stimulated first with C. neoformans and then with gamma interferon (IFN-γ) or IL-4 expressed mRNA polarization patterns similar to those stimulated with cytokines alone. To further evaluate macrophage polarization plasticity, cytokine stimulatory conditions were established which fully polarized macrophages. IFN-γ and IL-4 stimulation differentially induced complete M1 and M2 polarization, defined by differential expression of marker mRNA panels, surface marker expression, and tumor necrosis factor alpha (TNF-α) protein production. Switching IFN-γ- to IL-4-stimulating conditions, and vice versa, resulted in uniform changes in profiles of polarization marker genes consistent with the most recent cytokine environment. Furthermore, the ability of sequentially stimulated macrophages to inhibit C. neoformans reflected the most recent polarizing condition, independent of previous polarization. Collectively, these data indicate that M1/M2 macrophage polarization phenotypes are highly plastic to external signals, and interventions which therapeutically repolarize macrophages could be beneficial for treatment of cryptococcosis. IMPORTANCE Our studies reveal how a major opportunistic fungal pathogen, Cryptococcus neoformans, interacts with macrophages, immune cells which can ingest and kill invading pathogens. Macrophages play a crucial role in the pathogenesis of cryptococcal infection, as their polarization phenotype determines the outcome of the battle between the infected host and C. neoformans. This study suggests that dynamic changes in polarization of macrophages at the level of individual cells are an important characteristic of in vivo cryptococcosis, as they occur throughout the natural course of infection. We demonstrate that macrophages can rapidly and uniformly reverse their polarization phenotype in response to dynamic signaling conditions and lose or regain their fungicidal function. Demonstrating importance of these pathways may become a cornerstone for novel therapeutic strategies for treatment of cryptococcosis in both immunocompromised and immunocompetent patients. Our studies reveal how a major opportunistic fungal pathogen, Cryptococcus neoformans, interacts with macrophages, immune cells which can ingest and kill invading pathogens. Macrophages play a crucial role in the pathogenesis of cryptococcal infection, as their polarization phenotype determines the outcome of the battle between the infected host and C. neoformans. This study suggests that dynamic changes in polarization of macrophages at the level of individual cells are an important characteristic of in vivo cryptococcosis, as they occur throughout the natural course of infection. We demonstrate that macrophages can rapidly and uniformly reverse their polarization phenotype in response to dynamic signaling conditions and lose or regain their fungicidal function. Demonstrating importance of these pathways may become a cornerstone for novel therapeutic strategies for treatment of cryptococcosis in both immunocompromised and immunocompetent patients.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Listeria monocytogenes exploits cystic fibrosis transmembrane conductance regulator (CFTR) to escape the phagosome

Andrea L. Radtke; Kelsi L. Anderson; Michael J. Davis; Matthew J. DiMagno; Joel A. Swanson; Mary O'Riordan

Virulence of the intracellular pathogen Listeria monocytogenes (Listeria) requires escape from the phagosome into the host cytosol, where the bacteria replicate. Phagosomal escape is a multistep process characterized by perforation, which is dependent on the pore-forming toxin listeriolysin O (LLO), followed by rupture. The contribution of host factors to Listeria phagosomal escape is incompletely defined. Here we show that the cystic fibrosis transmembrane conductance regulator (CFTR) facilitates Listeria cytosolic entry. CFTR inhibition or mutation suppressed Listeria vacuolar escape in culture, and inhibition of CFTR in wild-type mice before oral inoculation of Listeria markedly decreased systemic infection. We provide evidence that high chloride concentrations may facilitate Listeria vacuolar escape by enhancing LLO oligomerization and lytic activity. We propose that CFTR transiently increases phagosomal chloride concentration after infection, potentiating LLO pore formation and vacuole lysis. Our studies suggest that Listeria exploits mechanisms of cellular ion homeostasis to escape the phagosome and emphasize host ion-channel function as a key parameter of bacterial virulence.


PLOS ONE | 2012

Immune Modulation Mediated by Cryptococcal Laccase Promotes Pulmonary Growth and Brain Dissemination of Virulent Cryptococcus neoformans in Mice

Yafeng Qiu; Michael J. Davis; Jeremy K. Dayrit; Zachary Hadd; Daniel L. Meister; John J. Osterholzer; Peter R. Williamson; Michal A. Olszewski

C. neoformans is a leading cause of fatal mycosis linked to CNS dissemination. Laccase, encoded by the LAC1 gene, is an important virulence factor implicated in brain dissemination yet little is known about the mechanism(s) accounting for this observation. Here, we investigated whether the presence or absence of laccase altered the local immune response in the lungs by comparing infections with the highly virulent strain, H99 (which expresses laccase) and mutant strain of H99 deficient in laccase (lac1Δ) in a mouse model of pulmonary infection. We found that LAC1 gene deletion decreased the pulmonary fungal burden and abolished CNS dissemination at weeks 2 and 3. Furthermore, LAC1 deletion lead to: 1) diminished pulmonary eosinophilia; 2) increased accumulation of CD4+ and CD8+ T cells; 3) increased Th1 and Th17 cytokines yet decreased Th2 cytokines; and 4) lung macrophage shifting of the lung macrophage phenotype from M2- towards M1-type activation. Next, we used adoptively transferred CD4+ T cells isolated from pulmonary lymph nodes of mice infected with either lac1Δ or H99 to evaluate the role of laccase-induced immunomodulation on CNS dissemination. We found that in comparison to PBS treated mice, adoptively transferred CD4+ T cells isolated from lac1Δ-infected mice decreased CNS dissemination, while those isolated from H99-infected mice increased CNS dissemination. Collectively, our findings reveal that immune modulation away from Th1/Th17 responses and towards Th2 responses represents a novel mechanism through which laccase can contribute to cryptococcal virulence. Furthermore, our data support the hypothesis that laccase-induced changes in polarization of CD4+ T cells contribute to CNS dissemination.


Mbio | 2013

X-Linked Immunodeficient Mice Exhibit Enhanced Susceptibility to Cryptococcus neoformans Infection

Wendy A. Szymczak; Michael J. Davis; Steven K. Lundy; Chad Dufaud; Michal A. Olszewski; Liise Anne Pirofski

ABSTRACT Bruton’s tyrosine kinase (Btk) is a signaling molecule that plays important roles in B-1 B cell development and innate myeloid cell functions and has recently been identified as a target for therapy of B cell lymphomas. We examined the contribution of B-1 B cells to resistance to Cryptococcus neoformans infection by utilizing X-linked immunodeficient (XID) mice (CBA-CaHN-XID), which possess a mutation in Btk. XID mice had significantly higher brain fungal burdens than the controls 6 weeks after infection with C. neoformans strain 52D (CN52D); however, consistent with the propensity for greater virulence of C. neoformans strain H99 (CNH99), CNH99-infected XID mice had higher lung and brain fungal burdens than the controls 3 weeks after infection. Further studies in a chronic CN52D model revealed markedly lower levels of total and C. neoformans-specific serum IgM in XID mice than in the control mice 1 and 6 weeks after infection. Alveolar macrophage phagocytosis was markedly impaired in CN52D-infected XID mice compared to the controls, with XID mice exhibiting a disorganized lung inflammatory pattern in which Gomori silver staining revealed significantly more enlarged, extracellular C. neoformans cells than the controls. Adoptive transfer of B-1 B cells to XID mice restored peritoneal B-1 B cells but did not restore IgM levels to those of the controls and had no effect on the brain fungal burden at 6 weeks. Taken together, our data support the hypothesis that IgM promotes fungal containment in the lungs by enhancing C. neoformans phagocytosis and restricting C. neoformans enlargement. However, peritoneal B-1 B cells are insufficient to reconstitute a protective effect in the lungs. IMPORTANCE Cryptococcus neoformans is a fungal pathogen that causes an estimated 600,000 deaths per year. Most infections occur in individuals who are immunocompromised, with the majority of cases occurring in those with HIV/AIDS, but healthy individuals also develop disease. Immunoglobulin M (IgM) has been linked to resistance to disease in humans and mice. In this article, we found that X-linked immunodeficient (XID) mice, which have markedly reduced levels of IgM, were unable to contain Cryptococcus in the lungs. This was associated with reduced yeast uptake by macrophages, an aberrant tissue inflammatory response, an enlargement of the yeast cells in the lungs, and fungal dissemination to the brain. Since XID mice have a mutation in the Bruton’s tyrosine kinase (Btk) gene, our data suggest that treatments aimed at blocking the function of Btk could pose a higher risk for cryptococcosis. Cryptococcus neoformans is a fungal pathogen that causes an estimated 600,000 deaths per year. Most infections occur in individuals who are immunocompromised, with the majority of cases occurring in those with HIV/AIDS, but healthy individuals also develop disease. Immunoglobulin M (IgM) has been linked to resistance to disease in humans and mice. In this article, we found that X-linked immunodeficient (XID) mice, which have markedly reduced levels of IgM, were unable to contain Cryptococcus in the lungs. This was associated with reduced yeast uptake by macrophages, an aberrant tissue inflammatory response, an enlargement of the yeast cells in the lungs, and fungal dissemination to the brain. Since XID mice have a mutation in the Bruton’s tyrosine kinase (Btk) gene, our data suggest that treatments aimed at blocking the function of Btk could pose a higher risk for cryptococcosis.


Journal of Immunology | 2015

Cryptococcus neoformans–Induced Macrophage Lysosome Damage Crucially Contributes to Fungal Virulence

Michael J. Davis; Alison J. Eastman; Yafeng Qiu; Brian Gregorka; Thomas R. Kozel; John J. Osterholzer; Jeffrey L. Curtis; Joel A. Swanson; Michal A. Olszewski

Upon ingestion by macrophages, Cryptococcus neoformans can survive and replicate intracellularly unless the macrophages become classically activated. The mechanism enabling intracellular replication is not fully understood; neither are the mechanisms that allow classical activation to counteract replication. C. neoformans–induced lysosome damage was observed in infected murine bone marrow–derived macrophages, increased with time, and required yeast viability. To demonstrate lysosome damage in the infected host, we developed a novel flow cytometric method for measuring lysosome damage. Increased lysosome damage was found in C. neoformans–containing lung cells compared with C. neoformans–free cells. Among C. neoformans–containing myeloid cells, recently recruited cells displayed lower damage than resident cells, consistent with the protective role of recruited macrophages. The magnitude of lysosome damage correlated with increased C. neoformans replication. Experimental induction of lysosome damage increased C. neoformans replication. Activation of macrophages with IFN-γ abolished macrophage lysosome damage and enabled increased killing of C. neoformans. We conclude that induction of lysosome damage is an important C. neoformans survival strategy and that classical activation of host macrophages counters replication by preventing damage. Thus, therapeutic strategies that decrease lysosomal damage, or increase resistance to such damage, could be valuable in treating cryptococcal infections.


Journal of Immunology | 2013

Scavenger Receptor A Modulates the Immune Response to Pulmonary Cryptococcus neoformans Infection

Yafeng Qiu; Jeremy K. Dayrit; Michael J. Davis; Jacob Carolan; John J. Osterholzer; Jeffrey L. Curtis; Michal A. Olszewski

Scavenger receptors represent an important class of pattern recognition receptors shown to mediate both beneficial and detrimental roles in host defense against microbial pathogens. The role of the major macrophage scavenger receptor, scavenger receptor A (SRA), in the immune response against the pathogenic fungus, Cryptococcus neoformans, is unknown. To evaluate the role of SRA in anticryptococcal host defenses, SRA+/+ mice and SRA−/− mice were infected intratracheally with C. neoformans. Results show that infection of SRA−/− mice resulted in a reduction in the pulmonary fungal burden at the efferent phase (3 wk) compared with SRA+/+ mice. Improved fungal clearance in SRA−/− mice was associated with decreased accumulation of eosinophils and greater accumulation of CD4+ T cells and CD11b+ dendritic cells. Additional parameters were consistent with enhanced anticryptococcal immunity in the infected SRA−/− mice: 1) increased expression of the costimulatory molecules CD80 and CD86 by lung APCs, 2) decreased expression of Th2 cytokines (IL-4 and IL-13) and IL-10 in lung leukocytes and in cryptococcal Ag-pulsed splenocytes, 3) diminished IgE production in sera, and 4) increased hallmarks of classical pulmonary macrophage activation. These effects were preceded by increased expression of early pro-Th1 genes in pulmonary lymph nodes at the afferent phase (1 wk). Collectively, our data show that SRA can be exploited by C. neoformans to interfere with the early events of the afferent responses that support Th1 immune polarization. This results in amplification of Th2 arm of the immune response and subsequently impaired adaptive control of C. neoformans in the infected lungs.


Journal of Leukocyte Biology | 2010

Technical Advance: caspase-1 activation and IL-1β release correlate with the degree of lysosome damage, as illustrated by a novel imaging method to quantify phagolysosome damage

Michael J. Davis; Joel A. Swanson

In addition to the lysosomeˈs important roles in digestion, antigen processing, and microbial destruction, lysosome damage in macrophages can trigger cell death and release of the inflammatory cytokine IL‐1β. To examine the relationship among endocytosis, lysosome damage, and subsequent events, such as caspase‐1 activation and IL‐1β secretion, we developed a method for measuring lysosome disruption inside individual living cells, which quantifies release of Fdx from lysosomes. Unperturbed, cultured BMM exhibited low levels of lysosome damage, which were not increased by stimulation of macropinocytosis. Lysosome damage following phagocytosis differed with different types of ingested particles, with negligible damage after ingestion of sRBC ghosts, intermediate damage by polystyrene (PS) beads, and high levels of damage by ground silica. Pretreatment with LPS decreased the amount of lysosome damage following phagocytosis of PS beads, silica microspheres, or ground silica. Activation of caspase‐1 and subsequent release of IL‐1β were proportional to lysosome damage following phagocytosis. The low level of damage following PS bead phagocytosis was insufficient to activate caspase‐1 in LPS‐activated macrophages. These studies indicate that lysosome damage following phagocytosis is dependent on particle composition and dose and that caspase‐1 activation and IL‐1β secretion correlate with the extent of lysosome damage.


American Journal of Pathology | 2012

Virulence Factors Identified by Cryptococcus neoformans Mutant Screen Differentially Modulate Lung Immune Responses and Brain Dissemination

Xiumiao He; Daniel M. Lyons; Dena L. Toffaletti; Fuyuan Wang; Yafeng Qiu; Michael J. Davis; Daniel L. Meister; Jeremy K. Dayrit; Anthony Lee; John J. Osterholzer; John R. Perfect; Michal A. Olszewski

Deletions of cryptococcal PIK1, RUB1, and ENA1 genes independently rendered defects in yeast survival in human CSF and within macrophages. We evaluated virulence potential of these genes by comparing wild-type Cryptococcus neoformans strain H99 with deletant and complement strains in a BALB/c mouse model of pulmonary infection. Survival of infected mice; pulmonary cryptococcal growth and pathology; immunological parameters; dissemination kinetics; and CNS pathology were examined. Deletion of each PIK1, RUB1, and ENA1 differentially reduced pulmonary growth and dissemination rates of C. neoformans and extended mice survival. Furthermore, pik1Δ induced similar pathologies to H99, however, with significantly delayed onset; rub1Δ was more efficiently contained within pulmonary macrophages and was further delayed in causing CNS dissemination/pathology; whereas ena1Δ was progressively eliminated from the lungs and did not induce pathological lesions or disseminate into the CNS. The diminished virulence of mutant strains was associated with differential modulation of pulmonary immune responses, including changes in leukocyte subsets, cytokine responses, and macrophage activation status. Compared to H99 infection, mutants induced more hallmarks of a protective Th1 immune response, rather than Th2, and more classical, rather than alternative, macrophage activation. The magnitude of immunological effects precisely corresponded to the level of virulence displayed by each strain. Thus, cryptococcal PIK1, RUB1, and ENA1 differentially contribute to cryptococcal virulence, in correlation with their differential capacity to modulate immune responses.


Journal of Immunology | 2012

Inducible Renitence Limits Listeria monocytogenes Escape from Vacuoles in Macrophages

Michael J. Davis; Brian Gregorka; Jason E. Gestwicki; Joel A. Swanson

Membranes of endolysosomal compartments in macrophages are often damaged by physical or chemical effects of particles ingested through phagocytosis or by toxins secreted by intracellular pathogens. This study identified a novel inducible activity in macrophages that increases resistance of phagosomes, late endosomes, and lysosomes to membrane damage. Pretreatment of murine macrophages with LPS, peptidoglycan, TNF-α, or IFN-γ conferred protection against subsequent damage to intracellular membranes caused by photooxidative chemistries or by phagocytosis of ground silica or silica microspheres. Phagolysosome damage was partially dependent on reactive oxygen species but was independent of the phagocyte oxidase. IFN-γ–stimulated macrophages from mice lacking the phagocyte oxidase inhibited escape from vacuoles by the intracellular pathogen Listeria monocytogenes, which suggested a role for this inducible renitence (resistance to pressure) in macrophage resistance to infection by pathogens that damage intracellular membranes. Renitence and inhibition of L. monocytogenes escape were partially attributable to heat shock protein-70. Thus, renitence is a novel, inducible activity of macrophages that maintains or restores the integrity of endolysosomal membranes.

Collaboration


Dive into the Michael J. Davis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yafeng Qiu

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge