Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael J. Gaffey is active.

Publication


Featured researches published by Michael J. Gaffey.


Journal of Geophysical Research | 1991

Pyroxene spectroscopy revisited: Spectral‐compositional correlations and relationship to geothermometry

Edward A. Cloutis; Michael J. Gaffey

The authors wish to thank the various agencies which have provided the necessary support for this project including grants-in-aid of research from Sigma Xi, The Scientific Research Society (to E.A.C.), the Geological Society of America grant 3741-87 (to E.A.C.), and NASA Planetary Geology and Geophysics grant NAGW 642 (to M.J.G.).


Science | 1989

Phyllosilicate Absorption Features in Main-Belt and Outer-Belt Asteroid Reflectance Spectra

Faith Vilas; Michael J. Gaffey

Absorption features having depths up to 5% are identified in high-quality, high-resolution reflectance spectra of 16 dark asteroids in the main belt and in the Cybele and Hilda groups. Analogs among the CM2 carbonaceous chondrite meteorites exist for some of these asteroids, suggesting that these absorptions are due to iron oxides in phyllosilicates formed on the asteroidal surfaces by aqueous alteration processes. Spectra of ten additional asteroids, located beyond the outer edge of the main belt, show no discernible absorption features, suggesting that aqueous alteration did not always operate at these heliocentric distances.


Science | 2012

Color and Albedo Heterogeneity of Vesta from Dawn

Vishnu Reddy; A. Nathues; Lucille Le Corre; H. Sierks; Jian-Yang Li; Robert W. Gaskell; Timothy J. McCoy; Andrew W. Beck; Stefan E. Schröder; Carle M. Pieters; Kris J. Becker; Bonnie J. Buratti; Brett W. Denevi; David T. Blewett; Ulrich R. Christensen; Michael J. Gaffey; Pablo Gutierrez-Marques; Michael D. Hicks; H. U. Keller; Thorsten Maue; S. Mottola; Lucy A. McFadden; Harry Y. McSween; David W. Mittlefehldt; David Patrick O'Brien; C.A. Raymond; C. T. Russell

A New Dawn Since 17 July 2011, NASAs spacecraft Dawn has been orbiting the asteroid Vesta—the second most massive and the third largest asteroid in the solar system (see the cover). Russell et al. (p. 684) use Dawns observations to confirm that Vesta is a small differentiated planetary body with an inner core, and represents a surviving proto-planet from the earliest epoch of solar system formation; Vesta is also confirmed as the source of the howardite-eucrite-diogenite (HED) meteorites. Jaumann et al. (p. 687) report on the asteroids overall geometry and topography, based on global surface mapping. Vestas surface is dominated by numerous impact craters and large troughs around the equatorial region. Marchi et al. (p. 690) report on Vestas complex cratering history and constrain the age of some of its major regions based on crater counts. Schenk et al. (p. 694) describe two giant impact basins located at the asteroids south pole. Both basins are young and excavated enough amounts of material to form the Vestoids—a group of asteroids with a composition similar to that of Vesta—and HED meteorites. De Sanctis et al. (p. 697) present the mineralogical characterization of Vesta, based on data obtained by Dawns visual and infrared spectrometer, revealing that this asteroid underwent a complex magmatic evolution that led to a differentiated crust and mantle. The global color variations detailed by Reddy et al. (p. 700) are unlike those of any other asteroid observed so far and are also indicative of a preserved, differentiated proto-planet. Spacecraft data provide a detailed characterization of the second most massive asteroid in the solar system. Multispectral images (0.44 to 0.98 μm) of asteroid (4) Vesta obtained by the Dawn Framing Cameras reveal global color variations that uncover and help understand the north-south hemispherical dichotomy. The signature of deep lithologies excavated during the formation of the Rheasilvia basin on the south pole has been preserved on the surface. Color variations (band depth, spectral slope, and eucrite-diogenite abundance) clearly correlate with distinct compositional units. Vesta displays the greatest variation of geometric albedo (0.10 to 0.67) of any asteroid yet observed. Four distinct color units are recognized that chronicle processes—including impact excavation, mass wasting, and space weathering—that shaped the asteroid’s surface. Vesta’s color and photometric diversity are indicative of its status as a preserved, differentiated protoplanet.


XV SPECIAL COURSES AT THE NATIONAL OBSERVATORY OF RIO DE JANEIRO | 2011

Mineralogy of Asteroids

Michael J. Gaffey

Reflectance spectroscopy is a powerful tool for the investigation of the nature, history, evolution, and relationships between asteroids and meteorites. This information provides a better understanding of the conditions present and processes active in the late solar nebula and the early solar system. To achieve the maximum information about asteroid‐meteorite relationships and asteroid histories, mineralogical characterizations should be derived from their reflectance spectra using quantitative methodologies and calibrations. Spectral curve matching is a very useful survey technique but can seldom establish reliable asteroid‐meteorite links. Mineralogical characterizations can be used to constrain the geochemical evolution of specific asteroids, to elucidate relationships to other asteroids, and to establish genetic links to specific meteorite types.


Icarus | 2012

Delivery of dark material to Vesta via carbonaceous chondritic impacts

Vishnu Reddy; Lucille Le Corre; David P. O’Brien; A. Nathues; Edward A. Cloutis; Daniel D. Durda; William F. Bottke; Megha Upendra Bhatt; David Nesvorny; D.L. Buczkowski; Jennifer E.C. Scully; E. Palmer; H. Sierks; Paul Mann; Kris J. Becker; Andrew W. Beck; David W. Mittlefehldt; Jian-Yang Li; Robert W. Gaskell; C. T. Russell; Michael J. Gaffey; Harry Y. McSween; Thomas B. McCord; Jean-Philippe Combe; David T. Blewett

NASA’s Dawn spacecraft observations of Asteroid (4) Vesta reveal a surface with the highest albedo and color variation of any asteroid we have observed so far. Terrains rich in low albedo dark material (DM) have been identified using Dawn Framing Camera (FC) 0.75 lm filter images in several geologic settings: associated with impact craters (in the ejecta blanket material and/or on the crater walls and rims); as flow-like deposits or rays commonly associated with topographic highs; and as dark spots (likely secondary impacts) nearby impact craters. This DM could be a relic of ancient volcanic activity or exogenic in origin. We report that the majority of the spectra of DM are similar to carbonaceous chondrite meteorites mixed with materials indigenous to Vesta. Using high-resolution seven color images we compared DM color properties (albedo, band depth) with laboratory measurements of possible analog materials. Band depth and albedo of DM are identical to those of carbonaceous chondrite xenolith-rich howardite Mt. Pratt (PRA) 04401. Laboratory mixtures of Murchison CM2 carbonaceous chondrite and basaltic eucrite Millbillillie also show band depth and albedo affinity to DM. Modeling of carbonaceous chondrite abundance in DM (1–6 vol.%) is consistent with howardite meteorites. We find no evidence for large-scale volcanism (exposed dikes/pyroclastic falls) as the source of DM. Our modeling efforts using impact crater scaling laws and numerical models of ejecta reaccretion suggest the delivery and emplacement of this DM on Vesta during the formation of the � 400 km Veneneia basin by a low-velocity (<2 km/s) carbonaceous impactor. This discovery is important because it strengthens the long-held idea that primitive bodies are the source of carbon and probably volatiles in the early Solar System.


Nature | 2001

The landing of the NEAR-Shoemaker spacecraft on asteroid 433 Eros.

J. Veverka; B. Farquhar; Mark S. Robinson; Peter C. Thomas; Scott L. Murchie; Ann P. Harch; P. G. Antreasian; Steven R. Chesley; J. K. Miller; W. M. Owen; B.G. Williams; D. K. Yeomans; David W. Dunham; Gene A. Heyler; M. Holdridge; R. L. Nelson; K. E. Whittenburg; J. C. Ray; Brian T. Carcich; Andrew F. Cheng; Clark R. Chapman; James F. Bell; M. Bell; Ben Bussey; Beth E. Clark; Deborah L. Domingue; Michael J. Gaffey; E. Hawkins; Noam R. Izenberg; Jonathan Joseph

The NEAR-Shoemaker spacecraft was designed to provide a comprehensive characterization of the S-type asteroid 433 Eros (refs 1,2,3), an irregularly shaped body with approximate dimensions of 34 × 13 × 13 km. Following the completion of its year-long investigation, the mission was terminated with a controlled descent to its surface, in order to provide extremely high resolution images. Here we report the results of the descent on 12 February 2001, during which 70 images were obtained. The landing area is marked by a paucity of small craters and an abundance of ‘ejecta blocks’. The properties and distribution of ejecta blocks are discussed in a companion paper. The last sequence of images reveals a transition from the blocky surface to a smooth area, which we interpret as a ‘pond’. Properties of the ‘ponds’ are discussed in a second companion paper. The closest image, from an altitude of 129 m, shows the interior of a 100-m-diameter crater at 1-cm resolution.


Icarus | 1992

Relationship of E-type Apollo asteroid 3103 (1982 BB) to the enstatite achondrite meteorites and the Hungaria asteroids

Michael J. Gaffey; Kevin L. Reed; Michael S. Kelley

Visible and near-infrared observations confirm that Apollo asteroid 3103 (1982 BB) has a reflectance spectrum consistent with its previous assignment to taxonomic type E. It has been generally believed that the E-type asteroids are analogous (and perhaps even genetically related) to the enstatite achondrite meteorites (aubrites). Correlated variations of previously published visible and thermal infrared lightcurves and the lack of rotational color variations in the present data indicate that this is an elongated object with no substantial surface albedo variations. Apollo asteroid 3103 (1982 BB) is presently in an orbital resonance (3:5) with Earth and appears to be a relatively long-lived member of the Earthapproaching population. Its orbit is consistent with both the fall dates and long cosmic ray exposure ages of the aubrites. Combined with the rarity of E-type asteroids in the near-Earth asteroid population, this indicates that 3103 (1982 BB) is probably either a major or the primary immediate source body of the aubrites. The aphelion location and the mineralogy of 3103 (1982 BB) indicate that it was most probably derived from the Hungaria region at the innermost edge (1.9 AU) of the asteroid belt, although the exact dynamical mechanism for producing its present orbit is not clear. These results represent the first plausible direct link of a set of meteorites (aubrites or enstatite achondrites) back to a particular source region in the asteroid belt. This link allows the composition of the solar nebula to be constrained at that heliocentric distance during the time interval when the parent assemblage of the aubrites was isolated from contact with the nebular gas by accretion into its parent planetesimal.


Space Science Reviews | 1978

Asteroid surface materials - Mineralogical characterizations from reflectance spectra

Michael J. Gaffey; Thomas B. McCord

The interpretation of diagnostic parameters in the spectral reflectance data for asteroids provides a means of characterizing the mineralogy and petrology of asteroid surface materials. An interpretive technique based on a quantitative understanding of the functional relationship between the optical properties of a mineral assemblage and its mineralogy, petrology and chemistry can provide a considerably more sophisticated characterization of a surface material than any matching or classification technique for those objects bright enough to allow spectral reflectance measurements. Albedos derived from radiometry and polarization data for individual asteroids can be used with spectral data to establish the spectral albedo, to define the optical density of the surface material and, in general, to constrain mineralogical interpretations.Mineral assemblages analogous to most meteorite types, with the exception of ordinary chondritic assemblages, have been found as surface materials of Main Belt asteroids. C1- and C2-like assemblages (unleached, oxidized meteoritic clay minerals plus opaques such as carbon) dominate the population (∼80%) throughout the Belt, especially in the outer Belt. A smaller population of asteroids exhibit surface materials similar to C3 (CO, CV) meteoritic assemblages (olivine plus opaque, probably carbon) and are also distributed throughout the Belt. The relative size (diameter) distributions for these two populations of objects are consistent with an origin by sequential accretion from a cooling nebula (‘C2’ as surface layers, ‘C3’ as interior layers or cores). Based on information from meteoritic analogues and on qualitative models for the behavior of these materials during a heating episode, it seems unlikely that these ‘C2’- and ‘C3’-like asteroidal bodies have experienced any significant post-accretionary heating event either near surface or in the deep interior.The majority of remaining studied asteroids (20) of 65 asteroids exhibit spectral reflectance curves dominated by the presence of metallic nickel-iron in their surface materials. These objects are most probably the several end products of an intense thermal event leading to the melting and differentiating of their protobodies. These thermalized bodies are concentrated toward the inner part of the Asteroid Belt but exist throughout the Belt.The size of the proto-asteroid has apparently exercised control over the post-accretionary thermal history of these bodies. The available evidence indicates that all asteroids larger than about 450 km in (present) diameter have undergone a significant heating episode since their formation. The post-accretionary thermal history of the asteroidal parent bodies was apparently affected by both distance from the Sun and body size.The C2-like materials which dominate the main asteroid belt population appear to be relatively rare on earth-approaching asteroids. This suggests that most of these Apollo-Amor objects are not randomly derived from the main belt, but (a) may derive from a single event in recent time (∼107 yr), (b) may derive from a favorably situated source body, (c) may derive from a particular, compositionally anomalous region of the belt, or (d) may derive from an alternate source (e.g. comets).


Icarus | 1990

Reflectance Spectra of Mafic Silicate-Opaque Assemblages with Applications to Meteorite Spectra

Edward A. Cloutis; Michael J. Gaffey; Dorian G. W. Smith; Richard St J. Lambert

Abstract The reflectance spectra of wustite and mixtures of mafic silicates plus carbon or magnetite can be used to interpret meteorite and asteroid spectra. Mafic silicate + magnetite spectra show many features characteristics of magnetite-bearing meteorites— an overall decline or constant reflectance and lown overall reflectance. Mafic silicate + amorphous carbon spectra show low overall reflectance and a red slope unlike that seen in CV and CO carbonaceous chondrite spectra, probably because the meteoritic carbon is in a more ordered form. The reflectance spectra of ureilites are largely consistent with an assemblage of mafic silicates and abundant carbon. Ordinary chondrite reflectance spectra cannot be reproduced by any of the laboratory mixture spectra. The reflectance spectrum of wustite is a reasonable match to the spectrum of ordinary chondrite metal, suggesting that most ordinary chondrite metal grains are probably coated with an optically thick layer of an oxide. Ordinary chondrite and mafic silicate reflectance spectra are consistently less red-sloped than S-class asteroid spectra. The various spectral criteria use to deco0nvolve mafic silicate spectra are also applicable to CV and CO carbonaceous chondrites, ureilites, and ordinary chondrites, because the opaque phases present in these meteorites are spectrally neutral.


Earth Moon and Planets | 1991

Spectral-compositional variations in the constituent minerals of mafic and ultramafic assemblages and remote sensing implications

Edward A. Cloutis; Michael J. Gaffey

The 0.3–2.6 Μm reflectance spectra of most mafic and ultramafic assemblages can best be interpreted by considering the spectra as being composed of mafic silicate spectra modified by the presence of opaques, such as ilmenite or magnetite, and plagioclase feldspar. The systematic spectral-compositional relationships for olivine, orthopyroxene, and clinopyroxene have been examined and it has been determined that absorption band wavelength positions are correlated with ferrous iron content. Binary mafic silicate mixtures are generally less well understood, but certain spectral features such as reflectance maxima and minima wavelength positions and absorption band areas can be used to quantify or at least constrain end member abundances and compositions. The addition of opaques to a mafic silicate assemblage lowers overall reflectance and band depths. This differs from the effects of increasing grain size which are to lower overall reflectance but increase band depths. Plagioclase is relatively transparent compared to mafic silicates and must be present in appreciable amounts (tens of percent) to be spectrally detectable. The reflectance spectra of most mafic and ultramafic assemblages are dominated by mafic silicate absorption features and analysis of their spectra on this basis allows constraints to be placed on properties such as end member abundances and compositions.

Collaboration


Dive into the Michael J. Gaffey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard P. Binzel

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Noam R. Izenberg

Johns Hopkins University Applied Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul S. Hardersen

University of North Dakota

View shared research outputs
Top Co-Authors

Avatar

Benjamin Zellner

Georgia Southern University

View shared research outputs
Top Co-Authors

Avatar

Eddie N. Wells

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar

Scott L. Murchie

Johns Hopkins University Applied Physics Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge