Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael J. Goedken is active.

Publication


Featured researches published by Michael J. Goedken.


Journal of Pharmacology and Experimental Therapeutics | 2010

Transcriptional Regulation of Renal Cytoprotective Genes by Nrf2 and its Potential Use as a Therapeutic Target to Mitigate Cisplatin-Induced Nephrotoxicity

Lauren M. Aleksunes; Michael J. Goedken; Cheryl E. Rockwell; Juergen Thomale; José E. Manautou; Curtis D. Klaassen

The use of the chemotherapeutic drug cisplatin is limited in part by nephrotoxicity. Cisplatin causes renal DNA adducts and oxidative stress in rodents. The transcription factor Nrf2 (nuclear factor E2-related factor 2) induces expression of cytoprotective genes, including Nqo1 (NADPH:quinone oxidoreductase 1), Ho-1 (heme oxygenase-1), and Gclc (glutamate cysteine ligase catalytic subunit), in response to electrophilic and oxidative stress. In the present study, plasma and kidneys from wild-type and Nrf2-null mice were collected after receiving cisplatin for evaluation of renal injury, inflammation, mRNA, and protein expression. Compared with wild types, more extensive nephrotoxicity was observed in Nrf2-null mice after cisplatin treatment. Kidneys from Nrf2-null mice treated with cisplatin had more neutrophil infiltration accompanied by increased p65 nuclear factor κB binding and elevated inflammatory mediator mRNA levels. Cisplatin increased renal mRNA and protein expression of cytoprotective genes (Nqo1, Ho-1, Gclc) and transporters Mrp2 and Mrp4 in wild-type but not in Nrf2-null mice. Lastly, the Nrf2 activator, CDDO-Im [2-cyano-3,12-dioxooleana-1,9-dien-28-oic imidazolide], increased Nrf2 signaling in kidneys from wild-type mice and protected them from cisplatin toxicity. Collectively, these data indicate that the absence of Nrf2 exacerbates cisplatin renal damage and that pharmacological activation of Nrf2 may represent a novel therapy to prevent kidney injury. Coordinated regulation of detoxification enzymes and drug transporters and suppression of inflammation by Nrf2 during cisplatin nephrotoxicity are probable defense mechanisms to eliminate toxic mediators and promote proximal tubule recovery.


Toxicological Sciences | 2009

Compensatory Induction of Liver Efflux Transporters in Response to ANIT-Induced Liver Injury Is Impaired in FXR-Null Mice

Yue Julia Cui; Lauren M. Aleksunes; Yuji Tanaka; Michael J. Goedken; Curtis D. Klaassen

Alpha-naphthyl isothiocyanate (ANIT) is a hepatotoxicant that produces acute intrahepatic cholestasis in rodents. Farnesoid X receptor (FXR) and pregnane X receptor (PXR) are two major bile acid sensors in liver. The purpose of this study was to characterize the regulation of hepatic transporters by FXR and PXR during ANIT-induced liver injury. Wild-type, FXR-null, and PXR-null mice were administered ANIT (75 mg/kg, po) and evaluated 48 h later for hepatotoxicity and messenger RNA (mRNA) expression of basolateral uptake (sodium taurocholate-cotransporting polypeptide, organic anion transporting polypeptide [Oatp] 1a1, Oatp1a4, Oatp1b2) and efflux transporters (organic solute transporter [Ost] alpha, Ostbeta, multidrug resistance-associated protein [Mrp] 3, Mrp4), as well as canalicular transporters (bile salt export pump [Bsep], Mrp2, multidrug resistance protein 2 [Mdr2], ATPase, class I, type 8B, member 1 [Atp8b1]). Livers from wild-type and PXR-null mice had comparable multifocal necrosis 48 h after ANIT. However, ANIT-treated FXR-null mice have fewer and smaller necrotic foci than wild-type mice but had scattered single-cell hepatocyte necrosis throughout the liver. Serum alanine transaminase, alkaline phosphatase (ALP), and direct bilirubin were increased in all genotypes, with higher ALP levels in FXR-null mice. Serum and liver unconjugated bile acids were higher in ANIT-treated FXR-null mice than the other two genotypes. ANIT induced mRNA expression of Mdr2, Bsep, and Atp8b1 in wild-type and PXR-null mice but failed to upregulate these genes in FXR-null mice. mRNA expression of uptake transporters declined in livers of all genotypes following ANIT treatment. ANIT increased Ostbeta and Mrp3 mRNA in livers of wild-type and PXR-null mice but did not alter Ostbeta mRNA in FXR-null mice. In conclusion, FXR deficiency enhances susceptibility of mice to ANIT-induced liver injury, likely a result of impaired induction of hepatobiliary efflux transporters and subsequent hepatic accumulation of unconjugated bile acids.


Journal of Pharmacology and Experimental Therapeutics | 2010

Nuclear Factor Erythroid 2-Related Factor 2 Deletion Impairs Glucose Tolerance and Exacerbates Hyperglycemia in Type 1 Diabetic Mice

Lauren M. Aleksunes; Scott A. Reisman; Ronnie L. Yeager; Michael J. Goedken; Curtis D. Klaassen

The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) induces a battery of cytoprotective genes after oxidative stress. Nrf2 aids in liver regeneration by altering insulin signaling; however, whether Nrf2 participates in hepatic glucose homeostasis is unknown. Compared with wild-type mice, mice lacking Nrf2 (Nrf2-null) have lower basal serum insulin and prolonged hyperglycemia in response to an intraperitoneal glucose challenge. In the present study, blood glucose, serum insulin, urine flow rate, and hepatic expression of glucose-related genes were quantified in male diabetic wild-type and Nrf2-null mice. Type 1 diabetes was induced with a single intraperitoneal dose (200 mg/kg) of streptozotocin (STZ). Histopathology and serum insulin levels confirmed depleted pancreatic β-cells in STZ-treated mice of both genotypes. Five days after STZ, Nrf2-null mice had higher blood glucose levels than wild-type mice. Nine days after STZ, polyuria occurred in both genotypes with more urine output from Nrf2-null mice (11-fold) than wild-type mice (7-fold). Moreover, STZ-treated Nrf2-null mice had higher levels of serum β-hydroxybutyrate, triglycerides, and fatty acids 10 days after STZ compared with wild-type mice. STZ reduced hepatic glycogen in both genotypes, with less observed in Nrf2-null mice. Increased urine output and blood glucose in STZ-treated Nrf2-null mice corresponded with enhanced gluconeogenesis (glucose-6-phosphatase and phosphoenolpyruvate carboxykinase)- and reduced glycolysis (pyruvate kinase)-related mRNA expression in their livers. Furthermore, the Nrf2 activator oltipraz lowered blood glucose in wild-type but not Nrf2-null mice administered STZ. Collectively, these data indicate that the absence of Nrf2 worsens hyperglycemia in type I diabetic mice and Nrf2 may represent a therapeutic target for reducing circulating glucose levels.


Toxicological Sciences | 2008

Acquired Resistance to Acetaminophen Hepatotoxicity is Associated with Induction of Multidrug Resistance-Associated Protein 4 (Mrp4) in Proliferating Hepatocytes

Lauren M. Aleksunes; Sarah N. Campion; Michael J. Goedken; José E. Manautou

Treatment with hepatotoxicants such as acetaminophen (APAP) causes resistance to a second, higher dose of the same toxicant (autoprotection). APAP induces hepatic mRNA and protein levels of the multidrug resistance-associated proteins (Mrp) transporters in mice and humans. Basolateral efflux transporters Mrp3 and Mrp4 are the most significantly induced. We hypothesized that upregulation of Mrp3 and Mrp4 is one mechanism by which hepatocytes become resistant to a subsequent higher dose of APAP by limiting accumulation of xeno-, endobiotics, and byproducts of hepatocellular injury. The purpose of this study was to evaluate Mrp3 and Mrp4 expression in proliferating hepatocytes in a mouse model of APAP autoprotection. Plasma and livers were collected from male C57BL/6J mice treated with APAP 400 mg/kg for determination of hepatotoxicity and protein expression. Maximal Mrp3 and Mrp4 induction occurred 48 h after APAP. Mrp4 upregulation occurred selectively in proliferating hepatocytes. Additional groups of APAP-pretreated mice were challenged 48 h later with a second, higher dose of APAP. APAP-pretreated mice had reduced hepatotoxicity after APAP challenge compared to those pretreated with vehicle. A more rapid recovery of glutathione (GSH) in APAP-pretreated mice corresponded with increases in GSH synthetic enzymes. Interestingly, mice pretreated and challenged with APAP had dramatic increases in Mrp4 expression as well as enhanced hepatocyte proliferation. Inhibition of hepatocyte replication with colchicine not only restored sensitivity of APAP-pretreated mice to injury, but also blocked Mrp4 induction. Mrp4 overexpression may be one phenotypic property of proliferating hepatocytes that protects against subsequent hepatotoxicant exposure by mechanisms that are presently unknown.


Drug Metabolism and Disposition | 2007

Induction of hepatobiliary efflux transporters in acetaminophen-induced acute liver failure cases.

Sarah N. Barnes; Lauren M. Aleksunes; Lisa M. Augustine; George L. Scheffer; Michael J. Goedken; Amy B. Jakowski; Ingrid Pruimboom-Brees; Nathan J. Cherrington; José E. Manautou

Alterations in transporter expression may represent a compensatory mechanism of damaged hepatocytes to reduce accumulation of potentially toxic compounds. The present study was conducted to investigate the expression of hepatobiliary efflux transporters in livers from patients after toxic acetaminophen (APAP) ingestion, with livers from patients with primary biliary cirrhosis (PBC) serving as positive controls. mRNA and protein expression of multidrug resistance-associated protein (MRP) 1-6, multidrug resistance protein (MDR) 1-3/P-glycoprotein (P-gp), and breast cancer resistance protein (BCRP) in normal (n = 6), APAP overdose (n = 5), and PBC (n = 6) human liver samples were determined by branched DNA and Western blot analysis, respectively. Double immunohistochemical staining of P-gp and proliferating cell nuclear antigen (PCNA), a marker of proliferation, was performed on paraffin-embedded tissue sections. Compared with normal liver specimens, MRP1 and MRP4 mRNA levels were elevated after APAP overdose and in PBC. Up-regulation of MRP5, MDR1, and BCRP mRNA occurred in PBC livers. Protein levels of MRP4, MRP5, BCRP, and P-gp were increased in both disease states, with MRP1 and MRP3 protein also being induced in PBC. Increased P-gp protein was confirmed immunohistochemically and was found to localize to areas of PCNA-positive hepatocytes, which were detected in APAP overdose and PBC livers. The findings from this study demonstrate that hepatic efflux transporter expression is up-regulated in cases of APAP-induced liver failure and PBC. This adaptation may aid in reducing retention of byproducts of cellular injury and bile constituents within hepatocytes. The close proximity of P-gp and PCNA-positive hepatocytes during liver injury suggests that along with cell regeneration, increased efflux transporter expression is a critical response to hepatic damage to protect the liver from additional insult.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2008

Hepatic Mrp4 induction following acetaminophen exposure is dependent on Kupffer cell function.

Sarah N. Campion; Rachel Johnson; Lauren M. Aleksunes; Michael J. Goedken; Nico van Rooijen; George L. Scheffer; Nathan J. Cherrington; José E. Manautou

During acetaminophen (APAP) hepatotoxicity, increased expression of multidrug resistance-associated proteins 2, 3, and 4 (Mrp2-4) occurs. Mrp4 is the most significantly upregulated transporter in mouse liver following APAP treatment. Although the expression profiles of liver transporters following APAP hepatotoxicity are well characterized, the regulatory mechanisms contributing to these changes remain unknown. We hypothesized that Kupffer cell-derived mediators participate in the regulation of hepatic transporters during APAP toxicity. To investigate this, C57BL/6J mice were pretreated with clodronate liposomes (0.1 ml iv) to deplete Kupffer cells and then challenged with APAP (500 mg/kg ip). Liver injury was assessed by plasma alanine aminotransferase and hepatic transporter protein expression was determined by Western blot and immunohistochemistry. Depletion of Kupffer cells by liposomal clodronate increased susceptibility to APAP hepatotoxicity. Although increased expression of several efflux transporters was observed after APAP exposure, only Mrp4 was found to be differentially regulated following Kupffer cell depletion. At 48 and 72 h after APAP dosing, Mrp4 levels were increased by 10- and 33-fold, respectively, in mice receiving empty liposomes. Immunohistochemistry revealed Mrp4 staining confined to centrilobular hepatocytes. Remarkably, Kupffer cell depletion completely prevented Mrp4 induction by APAP. Elevated plasma levels of TNF-alpha and IL-1beta were also prevented by Kupffer cell depletion. These findings show that Kupffer cells protect the liver from APAP toxicity and that Kupffer cell mediators released in response to APAP are likely responsible for the induction of Mrp4.


Toxicology and Applied Pharmacology | 2008

Coordinated Induction of Nrf2 Target Genes Protects Against Iron Nitrilotriacetate (FeNTA)-Induced Nephrotoxicity

Yuji Tanaka; Lauren M. Aleksunes; Michael J. Goedken; Chuan Chen; Scott A. Reisman; José E. Manautou; Curtis D. Klaassen

The iron chelate, ferric nitrilotriacetate (FeNTA), induces acute proximal tubular necrosis as a consequence of lipid peroxidation and oxidative tissue damage. Chronic exposure of FeNTA leads to a high incidence of renal adenocarcinomas in rodents. NF-E2-related factor 2 (Nrf2) is a transcription factor that is activated by oxidative stress and electrophiles, and regulates the basal and inducible expression of numerous detoxifying and antioxidant genes. To determine the roles of Nrf2 in regulating renal gene expression and protecting against oxidative stress-induced kidney damage, wild-type and Nrf2-null mice were administered FeNTA. Renal Nrf2 protein translocated to the nucleus at 6h after FeNTA treatment. FeNTA increased mRNA levels of Nrf2 target genes, including NQO1, GCLC, GSTpi1/2, Mrp1, 2, and 4 in kidneys from wild-type mice, but not Nrf2-null mice. Protein expression of NQO1, a prototypical Nrf2 target gene, was increased in wild-type mice, with no change in Nrf2-null mice. FeNTA produced more nephrotoxicity in Nrf2-null mice than wild-type mice as indicated by higher serum urea nitrogen and creatinine levels, as more urinary NAG, stronger 4-hydroxynonenal protein adduct staining, and more extensive proximal tubule damage. Furthermore, pretreatment with CDDO-Im, a potent small molecule Nrf2 activator, protected mice against FeNTA-induced renal toxicity. Collectively, these results suggest that activation of Nrf2 protects mouse kidneys from FeNTA-induced oxidative stress damage by coordinately up-regulating the expression of cytoprotective genes.


Cell Stress & Chaperones | 2006

Nuclear factor-E2-related factor 2 expression in liver is critical for induction of NAD(P)H:quinone oxidoreductase 1 during cholestasis

Lauren M. Aleksunes; Angela L. Slitt; Jonathan M. Maher; Matthew Z. Dieter; Tamara R. Knight; Michael J. Goedken; Nathan J. Cherrington; Jefferson Y. Chan; Curtis D. Klaassen; José E. Manautou

Abstract Bile duct ligation (BDL) causes hepatocellular oxidative stress and injury. The transcription factor nuclear factor-E2-related factor (Nrf2) induces expression of numerous genes including NAD(P)H:quinone oxidoreductase 1 (Nqo1) during periods of oxidative stress. Therefore, we hypothesized that BDL increases liver expression of mouse antioxidant genes in an Nrf2-dependent manner. BDL or sham surgeries were performed on male C57BL/6, Nrf2-null, and wild-type mice. Livers were collected at 1, 3, and 7 days after surgery for analysis of messenger ribonucleic acid (mRNA) levels of Nrf2-responsive genes as well as Nqo1 protein and activity. BDL increased mRNA expression of multiple Nrf2 genes in mouse liver, compared to sham-operated controls. Follow-up studies investigating protein expression, enzyme activity, and Nrf2 dependency were limited to Nqo1. Nqo1 protein expression and activity in mouse livers was increased 2- to 3-, and 4- to 5-fold at 3 and 7 days after BDL, respectively. Studies also showed that BDL increases Nqo1 mRNA, protein expression, and enzyme activity in livers from wild-type mice, but not in Nrf2-null mice. In conclusion, expression of Nrf2-dependent genes is increased during cholestasis. These studies also demonstrate that Nqo1 expression and activity in mouse liver are induced via an Nrf2-dependent mechanism.


Archive | 2009

IMMUNOMODULATION OF CRASSOSTREA GIGAS AND CRASSOSTREA VIRGINICA CELLULAR DEFENSE MECHANISMS BY PERKINSUS MARINUS

Michael J. Goedken; Brenda Morsey; Inke Sunila; Sylvain De Guise

Abstract The eastern oyster is an economically and ecologically important species whose vitality is threatened by the protozoal parasite Perkinsus marinus. To better understand which cellular defense mechanisms impart resistance to P. marinus, resistant (Crassostrea gigas) and susceptible (Crassostrea virginica) oyster species were challenged by an experimental infection with P. marinus and their cellular responses were quantified and compared. Both in vivo and in vitro infection trials measured hemocyte phagocytosis, respiratory burst, apoptosis at 1, 3 and 7 days postinfection (in vivo) or 1-h postco-incubation (in vitro). Total parasite body burden concentrations were also measured at the end of in vivo infections. Infections were significantly more severe in C. virginica than C. gigas at 3 and 7 days postinfection confirming the resistance of C. gigas and validating the experimental model. There was more phagocytosis in infected C. virginica than infected C. gigas three days postinfection. In vitro, C. virginica granulocytes phagocytized significantly more parasites and fluorescent latex beads than C. gigas granulocytes, and infection increased bead phagocytosis in both species, equally in cells with or without intracellular parasites. Neither in vivo nor in vitro infections significantly increased respiratory burst activity. While in vitro infections suppressed hemocyte apoptosis in both species, in vivo infections increased hemocyte apoptosis frequency in C. gigas at 3 days postinfection. In vivo infection increased hemocyte apoptosis in C. virginica at 7 days postinfection but not at three days postinfection. From those experiments, we concluded that the increased phagocytosis without concomitant increase in respiratory burst activity seen in infected C. virginica might exacerbate infections. Also, while in vitro P. marinus infection suppresses hemocyte apoptosis in both species, C. gigas appeared to overcome that suppression faster than C. virginica upon in vivo infection, suggesting that hemocyte apoptosis may be an effective oyster defense response against P. marinus infection. The combination in vitro and in vivo infections in P. marinus disease resistant and susceptible oyster species with multiple time points and assays allowed the identification of apoptosis as the cellular defense mechanism most likely to play an important role in defense against P. marinus. This information may provide more accurate predictive criteria for disease resistance, allowing for the testing and selection of more disease resistant oysters.


Toxicological Sciences | 2014

Increased Susceptibility to Methotrexate-Induced Toxicity in Nonalcoholic Steatohepatitis

Rhiannon N. Hardwick; John D. Clarke; April D. Lake; Mark J. Canet; Tarun Anumol; Stephanie M. Street; Matthew D. Merrell; Michael J. Goedken; Shane A. Snyder; Nathan J. Cherrington

Hepatic drug metabolizing enzymes and transporters play a crucial role in determining the fate of drugs, and alterations in liver function can place individuals at greater risk for adverse drug reactions (ADRs). We have shown that nonalcoholic steatohepatitis (NASH) leads to changes in the expression and localization of enzymes and transporters responsible for the disposition of numerous drugs. The purpose of this study was to determine the effect of NASH on methotrexate (MTX) disposition and the resulting toxicity profile. Sprague Dawley rats were fed either a control or methionine-choline-deficient diet for 8 weeks to induce NASH, then administered a single ip vehicle, 10, 40, or 100 mg/kg MTX injection followed by blood, urine, and feces collection over 96 h with terminal tissue collection. At the onset of dosing, Abcc1-4, Abcb1, and Abcg2 were elevated in NASH livers, whereas Abcc2 and Abcb1 were not properly localized to the membrane, similar to that previously observed in human NASH. NASH rodents receiving 40-100 mg/kg MTX exhibited hepatocellular damage followed by initiation of repair, whereas damage was absent in controls. NASH rodents receiving 100 mg/kg MTX exhibited slightly greater renal toxicity, indicating multiple organ toxicity, despite the majority of the dose being excreted by 6 h. Intestinal toxicity in NASH however, was strikingly less severe than controls, and coincided with reduced fecal MTX excretion. Because MTX-induced gastrointestinal toxicity limits the dose escalation necessary for cancer remission, these data suggest a greater risk for life-threatening MTX-induced hepatic and renal toxicity in NASH in the absence of overt gastrointestinal toxicity.

Collaboration


Dive into the Michael J. Goedken's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hui Li

University of Arizona

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge