Michael J. Haley
University of Manchester
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael J. Haley.
Journal of Cerebral Blood Flow and Metabolism | 2017
Michael J. Haley; Catherine B. Lawrence
Blood–brain barrier breakdown worsens ischaemic damage, but it is unclear how molecules breach the blood–brain barrier in vivo. Using the obese ob/ob mouse as a model of enhanced blood–brain barrier breakdown, we investigated how stroke-induced structural changes to the microvasculature related to blood–brain barrier permeability. Ob/ob mice underwent middle cerebral artery occlusion, followed by 4 or 24 h reperfusion. Blood–brain barrier integrity was assessed using IgG and horseradish peroxidase staining, and blood–brain barrier structure by two-dimensional and three-dimensional electron microscopy. At 4 and 24 h post-stroke, ob/ob mice had increased ischaemic damage and blood–brain barrier breakdown compared to ob/– controls, and vessels from both genotypes showed astrocyte end-foot swelling and increased endothelial vesicles. Ob/ob mice had significantly more endothelial vesicles at 4 h in the striatum, where blood–brain barrier breakdown was most severe. Both stroke and genotype had no effect on tight junction structure visualised by electron microscopy, or protein expression in isolated microvessels. Astrocyte swelling severity did not correlate with tissue outcome, being unaffected by genotype or reperfusion times. However, the rare instances of vessel lumen collapse were always associated with severe astrocyte swelling in two-dimensional and three-dimensional electron microscopy. Endothelial vesicles were therefore the best spatial and temporal indicators of blood–brain barrier breakdown after cerebral ischaemia.
PLOS Pathogens | 2017
Patrick Strangward; Michael J. Haley; Jean-Marc Schwartz; Rachel Greig; Aleksandr Mironov; J. Brian de Souza; Sheena M. Cruickshank; Alister Craig; Danny A. Milner; Stuart M. Allan; Kevin N. Couper
The murine model of experimental cerebral malaria (ECM) has been utilised extensively in recent years to study the pathogenesis of human cerebral malaria (HCM). However, it has been proposed that the aetiologies of ECM and HCM are distinct, and, consequently, no useful mechanistic insights into the pathogenesis of HCM can be obtained from studying the ECM model. Therefore, in order to determine the similarities and differences in the pathology of ECM and HCM, we have performed the first spatial and quantitative histopathological assessment of the ECM syndrome. We demonstrate that the accumulation of parasitised red blood cells (pRBCs) in brain capillaries is a specific feature of ECM that is not observed during mild murine malaria infections. Critically, we show that individual pRBCs appear to occlude murine brain capillaries during ECM. As pRBC-mediated congestion of brain microvessels is a hallmark of HCM, this suggests that the impact of parasite accumulation on cerebral blood flow may ultimately be similar in mice and humans during ECM and HCM, respectively. Additionally, we demonstrate that cerebrovascular CD8+ T-cells appear to co-localise with accumulated pRBCs, an event that corresponds with development of widespread vascular leakage. As in HCM, we show that vascular leakage is not dependent on extensive vascular destruction. Instead, we show that vascular leakage is associated with alterations in transcellular and paracellular transport mechanisms. Finally, as in HCM, we observed axonal injury and demyelination in ECM adjacent to diverse vasculopathies. Collectively, our data therefore shows that, despite very different presentation, and apparently distinct mechanisms, of parasite accumulation, there appear to be a number of comparable features of cerebral pathology in mice and in humans during ECM and HCM, respectively. Thus, when used appropriately, the ECM model may be useful for studying specific pathological features of HCM.
Journal of Cerebral Blood Flow and Metabolism | 2017
Nathalie Percie du Sert; Alessio Alfieri; Stuart M. Allan; Hilary V.O. Carswell; Graeme A. Deuchar; Tracy D. Farr; Paul Flecknell; Lindsay Gallagher; Claire L. Gibson; Michael J. Haley; Malcolm R. Macleod; Barry W. McColl; Christopher McCabe; Anna Morancho; Lawrence Moon; Michael O’Neill; Isabel Pérez-de Puig; Anna M. Planas; C. Ian Ragan; Anna Rosell; Lisa A. Roy; Kathryn Ryder; Alba Simats; Emily S. Sena; Brad A. Sutherland; Mark Tricklebank; Rebecca C. Trueman; Lucy Whitfield; Raymond Wong; I. Mhairi Macrae
Most in vivo models of ischaemic stroke target the middle cerebral artery and a spectrum of stroke severities, from mild to substantial, can be achieved. This review describes opportunities to improve the in vivo modelling of ischaemic stroke and animal welfare. It provides a number of recommendations to minimise the level of severity in the most common rodent models of middle cerebral artery occlusion, while sustaining or improving the scientific outcomes. The recommendations cover basic requirements pre-surgery, selecting the most appropriate anaesthetic and analgesic regimen, as well as intraoperative and post-operative care. The aim is to provide support for researchers and animal care staff to refine their procedures and practices, and implement small incremental changes to improve the welfare of the animals used and to answer the scientific question under investigation. All recommendations are recapitulated in a summary poster (see supplementary information).
Neuroscience | 2017
Michael J. Haley; David Brough; Jessica Quintin; Stuart M. Allan
In this review we discuss the possibility that the phenomenon of microglial priming can be explained by the mechanisms that underlie trained immunity. The latter involves the enhancement of inflammatory responses by epigenetic mechanisms that are mobilized after first exposure to an inflammatory stimulus. These mechanisms include long-lasting histone modifications, including H3K4me1 deposition at latent enhancer regions. Although such changes may be beneficial in peripheral infectious disease, in the context of microglial priming they may drive increased microglia reactivity that is damaging in diseases of brain aging.
Journal of Cerebral Blood Flow and Metabolism | 2016
Michael J. Haley; Catherine B. Lawrence
Obesity is a risk factor for stroke and is consequently one of the most common co-morbidities found in patients. There is therefore an identified need to model co-morbidities preclinically to allow better translation from bench to bedside. In preclinical studies, both diet-induced and genetically obese rodents have worse stroke outcome, characterised by increased ischaemic damage and an altered inflammatory response. However, clinical studies have reported an ‘obesity paradox’ in stroke, characterised by reduced mortality and morbidity in obese patients. We discuss the potential reasons why the preclinical and clinical studies may not agree, and review the mechanisms identified in preclinical studies through which obesity may affects stroke outcome. We suggest inflammation plays a central role in this relationship, as obesity features increases in inflammatory mediators such as C-reactive protein and interleukin-6, and chronic inflammation has been linked to worse stroke risk and outcome.
Experimental Neurology | 2016
Fiona Burrows; Michael J. Haley; E. Scott; Graham Coutts; Catherine B. Lawrence; Stuart M. Allan; Ingo Schiessl
Reperfusion after stroke is critical for improved patient survival and recovery and can be achieved clinically through pharmacological (recombinant tissue plasminogen activator) or physical (endovascular intervention) means. Yet these approaches remain confined to a small percentage of stroke patients, often with incomplete reperfusion, and therefore there is an urgent need to learn more about the mechanisms underlying the no-reflow phenomenon that prevents restoration of adequate microvascular perfusion. Recent evidence suggests systemic inflammation as an important contributor to no-reflow and to further investigate this here we inject interleukin 1 (IL-1) i.p. 30 min prior to an ischaemic challenge using a remote filament to occlude the middle cerebral artery (MCA) in mice. Before, during and after the injection of IL-1 and occlusion we use two-dimensional optical imaging spectroscopy to record the spatial and temporal dynamics of oxyhaemoglobin concentration in the cortical areas supplied by the MCA. Our results reveal that systemic inflammation significantly reduces oxyhaemoglobin reperfusion as early as 3 h after filament removal compared to vehicle injected animals. CD41 immunohistochemistry shows a significant increase of hyper-coagulated platelets within the microvessels in the stroked cortex of the IL-1 group compared to vehicle. We also observed an increase of pathophysiological biomarkers of ischaemic damage including elevated microglial activation co-localized with interleukin 1α (IL-1α), increased blood brain barrier breakdown as shown by IgG infiltration and increased pyknotic morphological changes of cresyl violet stained neurons. These data confirm systemic inflammation as an underlying cause of no-reflow in the post-ischaemic brain and that appropriate anti-inflammatory approaches could be beneficial in treating ischaemic stroke.
Scientific Reports | 2018
Elena Redondo-Castro; Dorte Faust; Simon A. Fox; Alex G. Baldwin; Simon Osborne; Michael J. Haley; Eric Karran; Hugh Nuthall; Peter Atkinson; Lee A. Dawson; Carol Routledge; Stuart M. Allan; Sally Freeman; Janet Brownlees; David Brough
Inflammation is an established contributor to disease and the NLRP3 inflammasome is emerging as a potential therapeutic target. A number of small molecule inhibitors of the NLRP3 pathway have been described. Here we analysed the most promising of these inhibitor classes side by side to assess relative potency and selectivity for their respective putative targets. Assessed using ASC inflammasome-speck formation, and release of IL-1β, in both human monocyte/macrophage THP1 cells and in primary mouse microglia, we compared the relative potency and selectivity of P2X7 inhibitors, inflammasome inhibitors (diarylsulfonylurea vs. the NBC series), and caspase-1 inhibitors. In doing so we are now able to provide a well characterised small molecule tool kit for interrogating and validating inflammasome-dependent responses with a range of nanomolar potency inhibitors against established points in the inflammasome pathway.
Proceedings of the National Academy of Sciences of the United States of America | 2018
Patrick Strangward; Michael J. Haley; Manuel G. Albornoz; Jack Barrington; Rebecca Dookie; Leo Zeef; Syed Murtuza Baker; Emma Winter; Te-Chen Tzeng; Douglas T. Golenbock; Sheena M. Cruickshank; Stuart M. Allan; Alister Craig; Foo Y. Liew; David Brough; Kevin N. Couper
Significance Cerebral malaria (CM) is a neurological complication of malaria infection that, despite antimalarial drug treatment, results in fatality or neurodisability in approximately 25% of cases. Thus, there is an urgent clinical need to develop therapies that can improve the efficacy of antimalarial drugs to prevent or reverse cerebral pathology. Here, we show in an experimental mouse model of CM (ECM) that IL33 administration can improve survival and reduce pathology in the brain over antimalarial drugs alone. Mechanistically, we demonstrate that IL33 enhances recovery from ECM by inhibiting NLRP3 inflammasome-induced inflammatory responses within the brain. These results suggest that IL33 and NLRP3 inflammasome inhibitors may be effective adjunctive therapies for CM. Cerebral malaria (CM) is a serious neurological complication caused by Plasmodium falciparum infection. Currently, the only treatment for CM is the provision of antimalarial drugs; however, such treatment by itself often fails to prevent death or development of neurological sequelae. To identify potential improved treatments for CM, we performed a nonbiased whole-brain transcriptomic time-course analysis of antimalarial drug chemotherapy of murine experimental CM (ECM). Bioinformatics analyses revealed IL33 as a critical regulator of neuroinflammation and cerebral pathology that is down-regulated in the brain during fatal ECM and in the acute period following treatment of ECM. Consistent with this, administration of IL33 alongside antimalarial drugs significantly improved the treatment success of established ECM. Mechanistically, IL33 treatment reduced inflammasome activation and IL1β production in microglia and intracerebral monocytes in the acute recovery period following treatment of ECM. Moreover, treatment with the NLRP3-inflammasome inhibitor MCC950 alongside antimalarial drugs phenocopied the protective effect of IL33 therapy in improving the recovery from established ECM. We further showed that IL1β release from macrophages was stimulated by hemozoin and antimalarial drugs and that this was inhibited by MCC950. Our results therefore demonstrate that manipulation of the IL33–NLRP3 axis may be an effective therapy to suppress neuroinflammation and improve the efficacy of antimalarial drug treatment of CM.
Journal of Cerebral Blood Flow and Metabolism | 2017
Michael J. Haley; Siddharth Krishnan; David Burrows; Leon de Hoog; Jamie Thakrar; Ingo Schiessl; Stuart M. Allan; Catherine B. Lawrence
Chronic consumption of diets high in fat leads to obesity and can negatively affect brain function. Rodents made obese by long-term maintenance on a high-fat diet have worse outcome after experimental stroke. High-fat consumption for only three days does not induce obesity but has rapid effects on the brain including memory impairment. However, the effect of brief periods of high-fat feeding or high-fat consumption in the absence of obesity on stroke is unknown. We therefore tested the effect of an acute period of high-fat feeding (three days) in C57B/6 mice on outcome after middle cerebral artery occlusion (MCAo). In contrast to a chronic high-fat diet (7.5 months), an acute high-fat diet had no effect on body weight, adipose tissue, lipid profile or inflammatory markers (in periphery and the brain). Three days of high-fat feeding impaired glucose tolerance, increased plasma glucose and insulin and brain expression of the glucose transporter GLUT-1. Ischaemic damage was increased (48%) in mice fed an acute high-fat diet, and was associated with a further reduction in GLUT-1 in the ischaemic hemisphere. These data demonstrate that only a brief period of high-fat consumption has a negative effect on glucose homeostasis and worsens outcome after ischaemic stroke.
Disease Models & Mechanisms | 2017
Michael J. Haley; Graham Mullard; Katherine A. Hollywood; Garth J. S. Cooper; Warwick B. Dunn; Catherine B. Lawrence
ABSTRACT Obesity is an independent risk factor for stroke, although several clinical studies have reported that obesity improves stroke outcome. Obesity is hypothesised to aid recovery by protecting against post-stroke catabolism. We therefore assessed whether obese mice had an altered metabolic and inflammatory response to stroke. Obese ob/ob mice underwent a 20-min middle cerebral artery occlusion and 24-h reperfusion. Lipid metabolism and expression of inflammatory cytokines were assessed in the plasma, liver and adipose tissue. The obese-specific metabolic response to stroke was assessed in plasma using non-targeted ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) metabolomics coupled with univariate and multivariate analysis. Obesity had no effect on the extent of weight loss 24 h after stroke but affected the metabolic and inflammatory responses to stroke, predominantly affecting lipid metabolism. Specifically, obese mice had increases in plasma free fatty acids and expression of adipose lipolytic enzymes. Metabolomics identified several classes of metabolites affected by stroke in obese mice, including fatty acids and membrane lipids (glycerophospholipids, lysophospholipids and sphingolipids). Obesity also featured increases in inflammatory cytokines in the plasma and adipose tissue. Overall, these results demonstrate that obesity affected the acute metabolic and inflammatory response to stroke and suggest a potential role for adipose tissue in this effect. These findings could have implications for longer-term recovery and also further highlight the importance of considering comorbidities in preclinical stroke research, especially when identifying biomarkers for stroke. However, further work is required to assess whether these changes translate into long-term effects on recovery. Summary: Obesity, a co-morbidity for stroke, affected the acute metabolic and inflammatory response to stroke, highlighting the importance of considering comorbidities in preclinical stroke research, especially when identifying biomarkers.