Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael J. Jurczak is active.

Publication


Featured researches published by Michael J. Jurczak.


Nature | 2012

Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity

Jorge Henao-Mejia; Eran Elinav; Cheng Cheng Jin; Liming Hao; Wajahat Z. Mehal; Till Strowig; Christoph A. Thaiss; Andrew L. Kau; Stephanie C. Eisenbarth; Michael J. Jurczak; Joao Paulo Camporez; Gerald I. Shulman; Jeffrey I. Gordon; Hal M. Hoffman; Richard A. Flavell

Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome and the leading cause of chronic liver disease in the Western world. Twenty per cent of NAFLD individuals develop chronic hepatic inflammation (non-alcoholic steatohepatitis, NASH) associated with cirrhosis, portal hypertension and hepatocellular carcinoma, yet the causes of progression from NAFLD to NASH remain obscure. Here, we show that the NLRP6 and NLRP3 inflammasomes and the effector protein IL-18 negatively regulate NAFLD/NASH progression, as well as multiple aspects of metabolic syndrome via modulation of the gut microbiota. Different mouse models reveal that inflammasome-deficiency-associated changes in the configuration of the gut microbiota are associated with exacerbated hepatic steatosis and inflammation through influx of TLR4 and TLR9 agonists into the portal circulation, leading to enhanced hepatic tumour-necrosis factor (TNF)-α expression that drives NASH progression. Furthermore, co-housing of inflammasome-deficient mice with wild-type mice results in exacerbation of hepatic steatosis and obesity. Thus, altered interactions between the gut microbiota and the host, produced by defective NLRP3 and NLRP6 inflammasome sensing, may govern the rate of progression of multiple metabolic syndrome-associated abnormalities, highlighting the central role of the microbiota in the pathogenesis of heretofore seemingly unrelated systemic auto-inflammatory and metabolic disorders.


Nature | 2014

Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase

Anila K. Madiraju; Derek M. Erion; Yasmeen Rahimi; Xian-Man Zhang; Demetrios T. Braddock; Ronald A. Albright; Brett J. Prigaro; John L. Wood; Sanjay Bhanot; Michael J. MacDonald; Michael J. Jurczak; João-Paulo G. Camporez; Hui-Young Lee; Gary W. Cline; Varman T. Samuel; Richard G. Kibbey; Gerald I. Shulman

Metformin is considered to be one of the most effective therapeutics for treating type 2 diabetes because it specifically reduces hepatic gluconeogenesis without increasing insulin secretion, inducing weight gain or posing a risk of hypoglycaemia. For over half a century, this agent has been prescribed to patients with type 2 diabetes worldwide, yet the underlying mechanism by which metformin inhibits hepatic gluconeogenesis remains unknown. Here we show that metformin non-competitively inhibits the redox shuttle enzyme mitochondrial glycerophosphate dehydrogenase, resulting in an altered hepatocellular redox state, reduced conversion of lactate and glycerol to glucose, and decreased hepatic gluconeogenesis. Acute and chronic low-dose metformin treatment effectively reduced endogenous glucose production, while increasing cytosolic redox and decreasing mitochondrial redox states. Antisense oligonucleotide knockdown of hepatic mitochondrial glycerophosphate dehydrogenase in rats resulted in a phenotype akin to chronic metformin treatment, and abrogated metformin-mediated increases in cytosolic redox state, decreases in plasma glucose concentrations, and inhibition of endogenous glucose production. These findings were replicated in whole-body mitochondrial glycerophosphate dehydrogenase knockout mice. These results have significant implications for understanding the mechanism of metformin’s blood glucose lowering effects and provide a new therapeutic target for type 2 diabetes.


Nature | 2011

Antidiabetic actions of a non-agonist PPARγ ligand blocking Cdk5-mediated phosphorylation

Jang Hyun Choi; Alexander S. Banks; Theodore M. Kamenecka; Scott A. Busby; Michael J. Chalmers; Naresh Kumar; Dana S. Kuruvilla; Youseung Shin; Yuanjun He; John B. Bruning; David Marciano; Michael D. Cameron; Dina Laznik; Michael J. Jurczak; Stephan C. Schürer; Dušica Vidovic; Gerald I. Shulman; Bruce M. Spiegelman; Patrick R. Griffin

PPARγ is the functioning receptor for the thiazolidinedione (TZD) class of antidiabetes drugs including rosiglitazone and pioglitazone. These drugs are full classical agonists for this nuclear receptor, but recent data have shown that many PPARγ-based drugs have a separate biochemical activity, blocking the obesity-linked phosphorylation of PPARγ by Cdk5 (ref. 2). Here we describe novel synthetic compounds that have a unique mode of binding to PPARγ, completely lack classical transcriptional agonism and block the Cdk5-mediated phosphorylation in cultured adipocytes and in insulin-resistant mice. Moreover, one such compound, SR1664, has potent antidiabetic activity while not causing the fluid retention and weight gain that are serious side effects of many of the PPARγ drugs. Unlike TZDs, SR1664 also does not interfere with bone formation in culture. These data illustrate that new classes of antidiabetes drugs can be developed by specifically targeting the Cdk5-mediated phosphorylation of PPARγ.


Cell | 2015

Hepatic Acetyl CoA Links Adipose Tissue Inflammation to Hepatic Insulin Resistance and Type 2 Diabetes

Rachel J. Perry; Joao Paulo Camporez; Romy Kursawe; Paul M. Titchenell; Dongyan Zhang; Curtis J. Perry; Michael J. Jurczak; Abulizi Abudukadier; Myoung Sook Han; Xian-Man Zhang; Hai Bin Ruan; Xiaoyong Yang; Sonia Caprio; Susan M. Kaech; Hei Sook Sul; Morris J. Birnbaum; Roger J. Davis; Gary W. Cline; Kitt Falk Petersen; Gerald I. Shulman

Impaired insulin-mediated suppression of hepatic glucose production (HGP) plays a major role in the pathogenesis of type 2 diabetes (T2D), yet the molecular mechanism by which this occurs remains unknown. Using a novel in vivo metabolomics approach, we show that the major mechanism by which insulin suppresses HGP is through reductions in hepatic acetyl CoA by suppression of lipolysis in white adipose tissue (WAT) leading to reductions in pyruvate carboxylase flux. This mechanism was confirmed in mice and rats with genetic ablation of insulin signaling and mice lacking adipose triglyceride lipase. Insulins ability to suppress hepatic acetyl CoA, PC activity, and lipolysis was lost in high-fat-fed rats, a phenomenon reversible by IL-6 neutralization and inducible by IL-6 infusion. Taken together, these data identify WAT-derived hepatic acetyl CoA as the main regulator of HGP by insulin and link it to inflammation-induced hepatic insulin resistance associated with obesity and T2D.


Cell | 2013

PKM2 isoform-specific deletion reveals a differential requirement for pyruvate kinase in tumor cells.

William J. Israelsen; Talya L. Dayton; Shawn M. Davidson; Brian Prescott Fiske; Aaron M. Hosios; Gary Bellinger; Jie Li; Yimin Yu; Mika Sasaki; James W. Horner; Laura N. Burga; Jianxin Xie; Michael J. Jurczak; Ronald A. DePinho; Clary B. Clish; Tyler Jacks; Richard G. Kibbey; Gerburg Wulf; Dolores Di Vizio; Gordon B. Mills; Lewis C. Cantley; Matthew G. Vander Heiden

The pyruvate kinase M2 isoform (PKM2) is expressed in cancer and plays a role in regulating anabolic metabolism. To determine whether PKM2 is required for tumor formation or growth, we generated mice with a conditional allele that abolishes PKM2 expression without disrupting PKM1 expression. PKM2 deletion accelerated mammary tumor formation in a Brca1-loss-driven model of breast cancer. PKM2 null tumors displayed heterogeneous PKM1 expression, with PKM1 found in nonproliferating tumor cells and no detectable pyruvate kinase expression in proliferating cells. This suggests that PKM2 is not necessary for tumor cell proliferation and implies that the inactive state of PKM2 is associated with the proliferating cell population within tumors, whereas nonproliferating tumor cells require active pyruvate kinase. Consistent with these findings, variable PKM2 expression and heterozygous PKM2 mutations are found in human tumors. These data suggest that regulation of PKM2 activity supports the different metabolic requirements of proliferating and nonproliferating tumor cells.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Development of insulin resistance in mice lacking PGC-1α in adipose tissues

Sandra Kleiner; Rina J. Mepani; Dina Laznik; Li Ye; Michael J. Jurczak; François R. Jornayvaz; Jennifer L. Estall; Diti Chatterjee Bhowmick; Gerald I. Shulman; Bruce M. Spiegelman

Reduced peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) expression and mitochondrial dysfunction in adipose tissue have been associated with obesity and insulin resistance. Whether this association is causally involved in the development of insulin resistance or is only a consequence of this condition has not been clearly determined. Here we studied the effects of adipose-specific deficiency of PGC-1α on systemic glucose homeostasis. Loss of PGC-1α in white fat resulted in reduced expression of the thermogenic and mitochondrial genes in mice housed at ambient temperature, whereas gene expression patterns in brown fat were not altered. When challenged with a high-fat diet, insulin resistance was observed in the mutant mice, characterized by reduced suppression of hepatic glucose output. Resistance to insulin was also associated with an increase in circulating lipids, along with a decrease in the expression of genes regulating lipid metabolism and fatty acid uptake in adipose tissues. Taken together, these data demonstrate a critical role for adipose PGC-1α in the regulation of glucose homeostasis and a potentially causal involvement in the development of insulin resistance.


Cell Metabolism | 2009

The Role of Peroxisome Proliferator-Activated Receptor γ Coactivator-1 β in the Pathogenesis of Fructose-Induced Insulin Resistance

Yoshio Nagai; Shin Yonemitsu; Derek M. Erion; Takanori Iwasaki; Romana Stark; Jianying Dong; Dongyan Zhang; Michael J. Jurczak; Michael G. Löffler; James Cresswell; Xing Xian Yu; Susan F. Murray; Sanjay Bhanot; Brett P. Monia; Jonathan S. Bogan; Varman T. Samuel; Gerald I. Shulman

Peroxisome proliferator-activated receptor gamma coactivator-1 beta (PGC-1beta) is known to be a transcriptional coactivator for SREBP-1, the master regulator of hepatic lipogenesis. Here, we evaluated the role of PGC-1beta in the pathogenesis of fructose-induced insulin resistance by using an antisense oligonucletoide (ASO) to knockdown PGC-1beta in liver and adipose tissue. PGC-1beta ASO improved the metabolic phenotype induced by fructose feeding by reducing expression of SREBP-1 and downstream lipogenic genes in liver. PGC-1beta ASO also reversed hepatic insulin resistance induced by fructose in both basal and insulin-stimulated states. Furthermore, PGC-1beta ASO increased insulin-stimulated whole-body glucose disposal due to a threefold increase in glucose uptake in white adipose tissue. These data support an important role for PGC-1beta in the pathogenesis of fructose-induced insulin resistance and suggest that PGC-1beta inhibition may be a therapeutic target for treatment of NAFLD, hypertriglyceridemia, and insulin resistance associated with increased de novo lipogenesis.


Diabetes | 2011

SGLT2 Deletion Improves Glucose Homeostasis and Preserves Pancreatic β-Cell Function

Michael J. Jurczak; Hui-Young Lee; Andreas L. Birkenfeld; François R. Jornayvaz; David W. Frederick; Rebecca L. Pongratz; Xiaoxian Zhao; Gilbert W. Moeckel; Varman T. Samuel; Jean M. Whaley; Gerald I. Shulman; Richard G. Kibbey

OBJECTIVE Inhibition of the Na+-glucose cotransporter type 2 (SGLT2) is currently being pursued as an insulin-independent treatment for diabetes; however, the behavioral and metabolic consequences of SGLT2 deletion are unknown. Here, we used a SGLT2 knockout mouse to investigate the effect of increased renal glucose excretion on glucose homeostasis, insulin sensitivity, and pancreatic β-cell function. RESEARCH DESIGN AND METHODS SGLT2 knockout mice were fed regular chow or a high-fat diet (HFD) for 4 weeks, or backcrossed onto the db/db background. The analysis used metabolic cages, glucose tolerance tests, euglycemic and hyperglycemic clamps, as well as isolated islet and perifusion studies. RESULTS SGLT2 deletion resulted in a threefold increase in urine output and a 500-fold increase in glucosuria, as well as compensatory increases in feeding, drinking, and activity. SGLT2 knockout mice were protected from HFD-induced hyperglycemia and glucose intolerance and had reduced plasma insulin concentrations compared with controls. On the db/db background, SGLT2 deletion prevented fasting hyperglycemia, and plasma insulin levels were also dramatically improved. Strikingly, prevention of hyperglycemia by SGLT2 knockout in db/db mice preserved pancreatic β-cell function in vivo, which was associated with a 60% increase in β-cell mass and reduced incidence of β-cell death. CONCLUSIONS Prevention of renal glucose reabsorption by SGLT2 deletion reduced HFD- and obesity-associated hyperglycemia, improved glucose intolerance, and increased glucose-stimulated insulin secretion in vivo. Taken together, these data support SGLT2 inhibition as a viable insulin-independent treatment of type 2 diabetes.


American Journal of Physiology-endocrinology and Metabolism | 2010

A high-fat, ketogenic diet causes hepatic insulin resistance in mice, despite increasing energy expenditure and preventing weight gain

François R. Jornayvaz; Michael J. Jurczak; Hui-Young Lee; Andreas L. Birkenfeld; David W. Frederick; Dongyang Zhang; Xian-Man Zhang; Varman T. Samuel; Gerald I. Shulman

Low-carbohydrate, high-fat ketogenic diets (KD) have been suggested to be more effective in promoting weight loss than conventional caloric restriction, whereas their effect on hepatic glucose and lipid metabolism and the mechanisms by which they may promote weight loss remain controversial. The aim of this study was to explore the role of KD on liver and muscle insulin sensitivity, hepatic lipid metabolism, energy expenditure, and food intake. Using hyperinsulinemic-euglycemic clamps, we studied insulin action in mice fed a KD or regular chow (RC). Body composition was assessed by ¹H magnetic resonance spectroscopy. Despite being 15% lighter (P < 0.001) than RC-fed mice because of a 17% increase in energy expenditure (P < 0.001), KD-fed mice manifested severe hepatic insulin resistance, as reflected by decreased suppression (0% vs. 100% in RC-fed mice, P < 0.01) of endogenous glucose production during the clamp. Hepatic insulin resistance could be attributed to a 350% increase in hepatic diacylglycerol content (P < 0.001), resulting in increased activation of PKCε (P < 0.05) and decreased insulin receptor substrate-2 tyrosine phosphorylation (P < 0.01). Food intake was 56% (P < 0.001) lower in KD-fed mice, despite similar caloric intake, and could partly be attributed to a more than threefold increase (P < 0.05) in plasma N-acylphosphatidylethanolamine concentrations. In conclusion, despite preventing weight gain in mice, KD induces hepatic insulin resistance secondary to increased hepatic diacylglycerol content. Given the key role of nonalcoholic fatty liver disease in the development of type 2 diabetes and the widespread use of KD for the treatment of obesity, these results may have potentially important clinical implications.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Hepatic insulin resistance in mice with hepatic overexpression of diacylglycerol acyltransferase 2

François R. Jornayvaz; Andreas L. Birkenfeld; Michael J. Jurczak; Shoichi Kanda; Blas A. Guigni; Debbie C. Jiang; Dongyan Zhang; Hui-Young Lee; Varman T. Samuel; Gerald I. Shulman

Mice overexpressing acylCoA:diacylglycerol (DAG) acyltransferase 2 in the liver (Liv-DGAT2) have been shown to have normal hepatic insulin responsiveness despite severe hepatic steatosis and increased hepatic triglyceride, diacylglycerol, and ceramide content, demonstrating a dissociation between hepatic steatosis and hepatic insulin resistance. This led us to reevaluate the role of DAG in causing hepatic insulin resistance in this mouse model of severe hepatic steatosis. Using hyperinsulinemic-euglycemic clamps, we studied insulin action in Liv-DGAT2 mice and their wild-type (WT) littermate controls. Here, we show that Liv-DGAT2 mice manifest severe hepatic insulin resistance as reflected by decreased suppression of endogenous glucose production (0.8 ± 41.8 vs. 87.7 ± 34.3% in WT mice, P < 0.01) during the clamps. Hepatic insulin resistance could be attributed to an almost 12-fold increase in hepatic DAG content (P < 0.01) resulting in a 3.6-fold increase in protein kinase Cε (PKCε) activation (P < 0.01) and a subsequent 52% decrease in insulin-stimulated insulin receptor substrate 2 (IRS-2) tyrosine phosphorylation (P < 0.05), as well as a 64% decrease in fold increase pAkt/Akt ratio from basal conditions (P < 0.01). In contrast, hepatic insulin resistance in these mice was not associated with increased endoplasmic reticulum (ER) stress or inflammation. Importantly, hepatic insulin resistance in Liv-DGAT2 mice was independent of differences in body composition, energy expenditure, or food intake. In conclusion, these findings strengthen the link between hepatic steatosis and hepatic insulin resistance and support the hypothesis that DAG-induced PKCε activation plays a major role in nonalcoholic fatty liver disease (NAFLD)-associated hepatic insulin resistance.

Collaboration


Dive into the Michael J. Jurczak's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge