Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael J. Jurynec is active.

Publication


Featured researches published by Michael J. Jurynec.


Science | 2005

SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans.

Rebecca L. Lamason; Manzoor Ali P K Mohideen; Jason R. Mest; Andy Wong; Heather L. Norton; Michele C. Aros; Michael J. Jurynec; Xianyun Mao; Vanessa R. Humphreville; Jasper E. Humbert; Soniya Sinha; Jessica L. Moore; Pudur Jagadeeswaran; Wei Zhao; Gang Ning; Izabela Makalowska; Paul McKeigue; David H. O'Donnell; Rick A. Kittles; Esteban J. Parra; Nancy J. Mangini; David Grunwald; Mark D. Shriver; Victor A. Canfield; Keith C. Cheng

Lighter variations of pigmentation in humans are associated with diminished number, size, and density of melanosomes, the pigmented organelles of melanocytes. Here we show that zebrafish golden mutants share these melanosomal changes and that golden encodes a putative cation exchanger slc24a5 (nckx5) that localizes to an intracellular membrane, likely the melanosome or its precursor. The human ortholog is highly similar in sequence and functional in zebrafish. The evolutionarily conserved ancestral allele of a human coding polymorphism predominates in African and East Asian populations. In contrast, the variant allele is nearly fixed in European populations, is associated with a substantial reduction in regional heterozygosity, and correlates with lighter skin pigmentation in admixed populations, suggesting a key role for the SLC24A5 gene in human pigmentation.


PLOS Genetics | 2012

Simple Methods for Generating and Detecting Locus-Specific Mutations Induced with TALENs in the Zebrafish Genome

Timothy J. Dahlem; Kazuyuki Hoshijima; Michael J. Jurynec; Derrick Gunther; Colby G. Starker; Alexandra S. Locke; Allison M. Weis; Daniel F. Voytas; David Grunwald

The zebrafish is a powerful experimental system for uncovering gene function in vertebrate organisms. Nevertheless, studies in the zebrafish have been limited by the approaches available for eliminating gene function. Here we present simple and efficient methods for inducing, detecting, and recovering mutations at virtually any locus in the zebrafish. Briefly, double-strand DNA breaks are induced at a locus of interest by synthetic nucleases, called TALENs. Subsequent host repair of the DNA lesions leads to the generation of insertion and deletion mutations at the targeted locus. To detect the induced DNA sequence alterations at targeted loci, genomes are examined using High Resolution Melt Analysis, an efficient and sensitive method for detecting the presence of newly arising sequence polymorphisms. As the DNA binding specificity of a TALEN is determined by a custom designed array of DNA recognition modules, each of which interacts with a single target nucleotide, TALENs with very high target sequence specificities can be easily generated. Using freely accessible reagents and Web-based software, and a very simple cloning strategy, a TALEN that uniquely recognizes a specific pre-determined locus in the zebrafish genome can be generated within days. Here we develop and test the activity of four TALENs directed at different target genes. Using the experimental approach described here, every embryo injected with RNA encoding a TALEN will acquire targeted mutations. Multiple independently arising mutations are produced in each growing embryo, and up to 50% of the host genomes may acquire a targeted mutation. Upon reaching adulthood, approximately 90% of these animals transmit targeted mutations to their progeny. Results presented here indicate the TALENs are highly sequence-specific and produce minimal off-target effects. In all, it takes about two weeks to create a target-specific TALEN and generate growing embryos that harbor an array of germ line mutations at a pre-specified locus.


Cell | 2010

TIF1γ Controls Erythroid Cell Fate by Regulating Transcription Elongation

Xiaoying Bai; Jonghwan Kim; Zhongan Yang; Michael J. Jurynec; Thomas E. Akie; Joseph Lee; Jocelyn LeBlanc; Anna Sessa; Hong Jiang; Anthony DiBiase; Yi Zhou; David Grunwald; Shuo Lin; Alan Cantor; Stuart H. Orkin; Leonard I. Zon

Recent genome-wide studies have demonstrated that pausing of RNA polymerase II (Pol II) occurred on many vertebrate genes. By genetic studies in the zebrafish tif1gamma mutant moonshine we found that loss of function of Pol II-associated factors PAF or DSIF rescued erythroid gene transcription in tif1gamma-deficient animals. Biochemical analysis established physical interactions among TIF1gamma, the blood-specific SCL transcription complex, and the positive elongation factors p-TEFb and FACT. Chromatin immunoprecipitation assays in human CD34(+) cells supported a TIF1gamma-dependent recruitment of positive elongation factors to erythroid genes to promote transcription elongation by counteracting Pol II pausing. Our study establishes a mechanism for regulating tissue cell fate and differentiation through transcription elongation.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Selenoprotein N is required for ryanodine receptor calcium release channel activity in human and zebrafish muscle

Michael J. Jurynec; Ruohong Xia; John J. Mackrill; Derrick Gunther; Thomas O. Crawford; Kevin M. Flanigan; Jonathan J. Abramson; Michael T. Howard; David Grunwald

Mutations affecting the seemingly unrelated gene products, SepN1, a selenoprotein of unknown function, and RyR1, the major component of the ryanodine receptor intracellular calcium release channel, result in an overlapping spectrum of congenital myopathies. To identify the immediate developmental and molecular roles of SepN and RyR in vivo, loss-of-function effects were analyzed in the zebrafish embryo. These studies demonstrate the two proteins are required for the same cellular differentiation events and are needed for normal calcium fluxes in the embryo. SepN is physically associated with RyRs and functions as a modifier of the RyR channel. In the absence of SepN, ryanodine receptors from zebrafish embryos or human diseased muscle have altered biochemical properties and have lost their normal sensitivity to redox conditions, which likely accounts for why mutations affecting either factor lead to similar diseases.


Developmental Cell | 2016

Precise Editing of the Zebrafish Genome Made Simple and Efficient

Kazuyuki Hoshijima; Michael J. Jurynec; David Grunwald

We present simple and efficient methods for creating heritable modifications of the zebrafish genome. Precisely modified alleles are generated by homologous recombination between the host genome and dsDNA donor molecules, stimulated by the induction of chromosomally targeted double-strand breaks. Several kilobase-long tracts of genome sequence can be replaced. Tagging donor sequences with reporter genes that can be subsequently excised improves recovery of edited alleles by an order of magnitude and facilitates recovery of recessive and phenotypically silent conditional mutations. We generate and demonstrate functionality of (1) alleles with a single codon change, (2) an allele encoding an epitope-tagged version of an endogenous protein, (3) alleles expressing reporter proteins, and (4) a conditional allele in which an exon is flanked by recombinogenic loxP sites. Our methods make recovery of a broad range of genome editing events very practicable, significantly advancing applicability of the zebrafish for studying normal biological processes and modeling diseases.


Developmental Dynamics | 2003

Two divergent slit1 genes in zebrafish

Lara D. Hutson; Michael J. Jurynec; Sang-Yeob Yeo; Hitoshi Okamoto; Chi-Bin Chien

Members of the Slit family regulate axon guidance and cell migration. To date, three vertebrate slit1 genes have been identified in mammals and orthologs of two, slit2 and slit3, have been identified in zebrafish. Here, we describe the cloning of full‐length cDNAs for two zebrafish slit orthologs, slit1a and slit1b. Both predicted proteins contain the conserved motifs that characterize other vertebrate Slits. slit1a and slit1b are both expressed in the midline, hypochord, telencephalon, and hindbrain. Apart from these shared expression domains, however, their expression patterns largely differ. Whereas slit1a is expressed broadly in the central nervous system (CNS) and in the somites, pectoral fin buds, tail bud, and caudal fin folds, slit1b is expressed in the olfactory system throughout embryonic and larval development, and in the retina during larval stages. Their expression patterns, particularly that of slit1a, suggest that Slit proteins may have roles in tissue morphogenesis in addition to their established roles in axon guidance and cell migration. Developmental Dynamics, 2003.


Experimental Neurology | 2003

Increased adenine nucleotide translocator 1 in reactive astrocytes facilitates glutamate transport.

Charles Buck; Michael J. Jurynec; Deepak K. Gupta; Alick Kt Law; Johannes Bilger; Douglas C. Wallace; Robert J. McKeon

A hallmark of central nervous system (CNS) pathology is reactive astrocyte production of the chronic glial scar that is inhibitory to neuronal regeneration. The reactive astrocyte response is complex; these cells also produce neurotrophic factors and are responsible for removal of extracellular glutamate, the excitatory neurotransmitter that rises to neurotoxic levels in injury and disease. To identify genes expressed by reactive astrocytes, we employed an in vivo model of the glial scar and differential display PCR and found an increase in the level of Ant1, a mitochondrial ATP/ADP exchanger that facilitates the flux of ATP out of the mitochondria. Ant1 expression in reactive astrocytes is regulated by transforming growth factor-beta1, a pluripotent CNS injury-induced cytokine. The significance of increased Ant1 is evident from the observation that glutamate uptake is significantly decreased in astrocytes from Ant1 null mutant mice while a specific Ant inhibitor reduces glutamate uptake in wild-type astrocytes. Thus, the astrocytic response to CNS injury includes an apparent increase in energy mobilization capacity by Ant1 that contributes to neuroprotective, energy-dependent glutamate uptake.


Molecular and Cellular Neuroscience | 2003

TIGR is upregulated in the chronic glial scar in response to central nervous system injury and inhibits neurite outgrowth.

Michael J. Jurynec; Catherine P. Riley; Deepak K. Gupta; Thai Nguyen; Robert J. McKeon; Charles Buck

Reactive astrocytes respond to central nervous system (CNS) injury and disease by elaborating a glial scar that is inhibitory to axonal regeneration. To identify genes that may be involved in the astrocytic response to injury, we used differential display polymerase chain reaction and an in vivo model of the CNS glial scar. Expression of the trabecular meshwork inducible glucocorticoid response (TIGR) gene was increased in gliotic tissue compared with the uninjured cerebral cortex. Increased TIGR expression by reactive astrocytes was confirmed by in situ hybridization, quantitative reverse transcriptase-polymerase chain reaction, immunoblot analysis, and immunohistochemistry. Although mutations of the TIGR gene have been implicated in glaucoma, a function for TIGR has not been reported. Since TIGR is secreted, we assessed a possible role in inhibition of neuronal regeneration with an in vitro bioassay and found that this protein is a potent inhibitor of neurite outgrowth. Thus, TIGR is a newly identified component of the CNS glial scar that is likely to contribute to neuronal regenerative failure characteristic of the mammalian CNS.


Disease Models & Mechanisms | 2010

SHIP2, a factor associated with diet-induced obesity and insulin sensitivity, attenuates FGF signaling in vivo.

Michael J. Jurynec; David Grunwald

SUMMARY SH2-domain-containing inositol phosphatase 2 (SHIP2) belongs to a small family of phosphoinositide 5-phosphatases that help terminate intracellular signaling initiated by activated receptor tyrosine kinases. Mammalian SHIP2 is viewed primarily as an attenuator of insulin signaling and has become a prominent candidate target for therapeutic agents that are designed to augment insulin signaling. Despite this view, no signaling pathway has yet been demonstrated as being affected directly by SHIP2 function in vivo, and in vitro studies indicate that the protein may function in multiple signaling pathways. Here, we analyze the role of a SHIP2 family member in the early zebrafish embryo where developmental and gene expression defects can be used to assay specific signaling pathways. The zebrafish ship2a transcript is maternally supplied, and inhibiting the expression of its protein product results in the expansion of dorsal tissue fates at the expense of ventral ones. We show that the developmental defects are the result of perturbation of fibroblast growth factor (FGF) signaling in the early embryo. Loss of Ship2a leads to an increased and expanded expression of outputs of FGF-mediated signaling, including FGF-dependent gene expression and activated mitogen-activated protein kinase (MAPK) signaling. Our findings demonstrate that Ship2a attenuates the FGF signaling pathway in vivo and functions in the establishment of normal tissue patterning in the early embryo. We suggest that modulation of FGF signaling may be a principal function of SHIP2 in mammals.


Disease Models & Mechanisms | 2011

Hadp1, a newly identified pleckstrin homology domain protein, is required for cardiac contractility in zebrafish

Joshua D. Wythe; Michael J. Jurynec; Lisa D. Urness; Christopher A. Jones; M. Khaled Sabeh; Andreas A. Werdich; Mariko Sato; H. Joseph Yost; David Grunwald; Calum A. MacRae; Dean Y. Li

SUMMARY The vertebrate heart is one of the first organs to form, and its early function and morphogenesis are crucial for continued embryonic development. Here we analyze the effects of loss of Heart adaptor protein 1 (Hadp1), which we show is required for normal function and morphogenesis of the embryonic zebrafish heart. Hadp1 is a pleckstrin homology (PH)-domain-containing protein whose expression is enriched in embryonic cardiomyocytes. Knockdown of hadp1 in zebrafish embryos reduced cardiac contractility and altered late myocyte differentiation. By using optical mapping and submaximal levels of hadp1 knockdown, we observed profound effects on Ca2+ handling and on action potential duration in the absence of morphological defects, suggesting that Hadp1 plays a major role in the regulation of intracellular Ca2+ handling in the heart. Hadp1 interacts with phosphatidylinositol 4-phosphate [PI4P; also known as PtdIns(4)P] derivatives via its PH domain, and its subcellular localization is dependent upon this motif. Pharmacological blockade of the synthesis of PI4P derivatives in vivo phenocopied the loss of hadp1 in zebrafish. Collectively, these results demonstrate that hadp1 is required for normal cardiac function and morphogenesis during embryogenesis, and suggest that hadp1 modulates Ca2+ handling in the heart through its interaction with phosphatidylinositols.

Collaboration


Dive into the Michael J. Jurynec's collaboration.

Top Co-Authors

Avatar

David Grunwald

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deepak K. Gupta

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge