Michael J. Massare
Novavax
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael J. Massare.
Journal of Virology | 2010
Matthew R. Murawski; Lori W. McGinnes; Robert W. Finberg; Evelyn A. Kurt-Jones; Michael J. Massare; Gale Smith; Penny M. Heaton; Armando E. Fraire; Trudy G. Morrison
ABSTRACT Respiratory syncytial virus (RSV) is the leading cause of serious respiratory infections in children as well as a serious cause of disease in elderly and immunosuppressed populations. There are no licensed vaccines available to prevent RSV disease. We have developed a virus-like particle (VLP) vaccine candidate for protection from RSV. The VLP is composed of the NP and M proteins of Newcastle disease virus (NDV) and a chimeric protein containing the cytoplasmic and transmembrane domains of the NDV HN protein and the ectodomain of the human RSV G protein (H/G). Immunization of mice with 10 or 40 μg total VLP-H/G protein by intraperitoneal or intramuscular inoculation stimulated antibody responses to G protein which were as good as or better than those stimulated by comparable amounts of UV-inactivated RSV. Immunization of mice with two doses or even a single dose of these particles resulted in the complete protection of mice from RSV replication in the lungs. Immunization with these particles induced neutralizing antibodies with modest titers. Upon RSV challenge of VLP-H/G-immunized mice, no enhanced pathology in the lungs was observed, although lungs of mice immunized in parallel with formalin-inactivated RSV (FI-RSV) showed the significant pathology that has previously been documented after immunization with FI-RSV. Thus, the VLP-H/G candidate vaccine was immunogenic in BALB/c mice and prevented replication of RSV in murine lungs, with no evidence of immunopathology. These data support further development of virus-like particle vaccine candidates for protection against RSV.
PLOS ONE | 2012
Gale Smith; Rama Raghunandan; Yingyun Wu; Ye Liu; Michael J. Massare; Margret Nathan; Bin Zhou; Hanxin Lu; Sarathi Boddapati; Jingning Li; David Flyer; Gregory M. Glenn
Respiratory Syncytial Virus (RSV) is an important viral agent causing severe respiratory tract disease in infants and children as well as in the elderly and immunocompromised individuals. The lack of a safe and effective RSV vaccine represents a major unmet medical need. RSV fusion (F) surface glycoprotein was modified and cloned into a baculovirus vector for efficient expression in Sf9 insect cells. Recombinant RSV F was glycosylated and cleaved into covalently linked F2 and F1 polypeptides that formed homotrimers. RSV F extracted and purified from insect cell membranes assembled into 40 nm protein nanoparticles composed of multiple RSV F oligomers arranged in the form of rosettes. The immunogenicity and protective efficacy of purified RSV F nanoparticles was compared to live and formalin inactivated RSV in cotton rats. Immunized animals induced neutralizing serum antibodies, inhibited virus replication in the lungs, and had no signs of disease enhancement in the respiratory track of challenged animals. RSV F nanoparticles also induced IgG competitive for binding of palivizumab neutralizing monoclonal antibody to RSV F antigenic site II. Antibodies to this epitope are known to protect against RSV when passively administered in high risk infants. Together these data provide a rational for continued development a recombinant RSV F nanoparticle vaccine candidate.
Journal of Virology | 2011
Lori W. McGinnes; Kathryn A. Gravel; Robert W. Finberg; Evelyn A. Kurt-Jones; Michael J. Massare; Gale Smith; Madelyn R. Schmidt; Trudy G. Morrison
ABSTRACT Human respiratory syncytial virus (RSV) is a serious respiratory pathogen in infants and young children as well as elderly and immunocompromised populations. However, no RSV vaccines are available. We have explored the potential of virus-like particles (VLPs) as an RSV vaccine candidate. VLPs composed entirely of RSV proteins were produced at levels inadequate for their preparation as immunogens. However, VLPs composed of the Newcastle disease virus (NDV) nucleocapsid and membrane proteins and chimera proteins containing the ectodomains of RSV F and G proteins fused to the transmembrane and cytoplasmic domains of NDV F and HN proteins, respectively, were quantitatively prepared from avian cells. Immunization of mice with these VLPs, without adjuvant, stimulated robust, anti-RSV F and G protein antibody responses. IgG2a/IgG1 ratios were very high, suggesting predominantly TH1 responses. In contrast to infectious RSV immunization, neutralization antibody titers were robust and stable for 4 months. Immunization with a single dose of VLPs resulted in the complete protection of mice from RSV replication in lungs. Upon RSV intranasal challenge of VLP-immunized mice, no enhanced lung pathology was observed, in contrast to the pathology observed in mice immunized with formalin-inactivated RSV. These results suggest that these VLPs are effective RSV vaccines in mice, in contrast to other nonreplicating RSV vaccine candidates.
Vaccine | 2014
Christopher M. Coleman; Ye V. Liu; Haiyan Mu; Justin K. Taylor; Michael J. Massare; David Flyer; Gregory M. Glenn; Gale Smith; Matthew B. Frieman
Abstract Development of vaccination strategies for emerging pathogens are particularly challenging because of the sudden nature of their emergence and the long process needed for traditional vaccine development. Therefore, there is a need for development of a rapid method of vaccine development that can respond to emerging pathogens in a short time frame. The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) in 2003 and Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in late 2012 demonstrate the importance of coronaviruses as emerging pathogens. The spike glycoproteins of coronaviruses reside on the surface of the virion and are responsible for virus entry. The spike glycoprotein is the major immunodominant antigen of coronaviruses and has proven to be an excellent target for vaccine designs that seek to block coronavirus entry and promote antibody targeting of infected cells. Vaccination strategies for coronaviruses have involved live attenuated virus, recombinant viruses, non-replicative virus-like particles expressing coronavirus proteins or DNA plasmids expressing coronavirus genes. None of these strategies has progressed to an approved human coronavirus vaccine in the ten years since SARS-CoV emerged. Here we describe a novel method for generating MERS-CoV and SARS-CoV full-length spike nanoparticles, which in combination with adjuvants are able to produce high titer antibodies in mice.
Vaccine | 2015
Ye V. Liu; Michael J. Massare; Melissa B. Pearce; Xiangjie Sun; Jessica A. Belser; Taronna R. Maines; Hannah M. Creager; Gregory M. Glenn; Peter Pushko; Gale Smith; Terrence M. Tumpey
In March 2013, diagnosis of the first reported case of human infection with a novel avian-origin influenza A(H7N9) virus occurred in eastern China. Most human cases have resulted in severe respiratory illness and, in some instances, death. Currently there are no licensed vaccines against H7N9 virus, which continues to cause sporadic human infections. Recombinant virus-like particles (VLPs) have been previously shown to be safe and effective vaccines for influenza. In this study, we evaluated the immunogenicity and protective efficacy of a H7N9 VLP vaccine in the ferret challenge model. Purified recombinant H7N9 VLPs morphologically resembled influenza virions and elicited high-titer serum hemagglutination inhibition (HI) and neutralizing antibodies specific for A/Anhui/1/2013 (H7N9) virus. H7N9 VLP-immunized ferrets subsequently challenged with homologous virus displayed reductions in fever, weight loss, and virus shedding compared to these parameters in unimmunized control ferrets. H7N9 VLP was also effective in protecting against lung and tracheal infection. The addition of either ISCOMATRIX or Matrix-M1 adjuvant improved immunogenicity and protection of the VLP vaccine against H7N9 virus. These results provide support for the development of a safe and effective human VLP vaccine with potent adjuvants against avian influenza H7N9 virus with pandemic potential.
Vaccine | 2014
Rama Raghunandan; Hanxin Lu; Bin Zhou; Mimi Guebre Xabier; Michael J. Massare; David Flyer; Louis F. Fries; Gale Smith; Gregory M. Glenn
Abstract Post-infectious immunity to respiratory syncytial virus (RSV) infection results in limited protection as evidenced by the high rate of infant hospitalization in the face of high titer, maternally derived RSV-specific antibodies. By contrast, RSV fusion (F) glycoprotein antigenic site II humanized monoclonal antibodies, palivizumab and motavizumab, have been shown to reduce RSV-related hospitalization in infants. Immunogenicity and efficacy studies were conducted in cotton rats comparing a recombinant RSV F nanoparticle vaccine with palivizumab and controlled with live RSV virus intranasal immunization and, formalin inactivated RSV vaccine. Active immunization with RSV F nanoparticle vaccine containing an alum adjuvant induced serum levels of palivizumab competing antibody (PCA) greater than passive administration of 15mg/kg palivizumab (human prophylactic dose) in cotton rats and neutralized RSV-A and RSV-B viruses. Immunization prevented detectable RSV replication in the lungs and, unlike passive administration of palivizumab, in the nasal passage of challenged cotton rats. Histology of lung tissues following RSV challenge showed no enhanced disease in the vaccinated groups in contrast to formalin inactivated ‘Lot 100’ vaccine. Passive intramuscular administration of RSV F vaccine-induced immune sera one day prior to challenge of cotton rats reduced viral titers by 2 or more log10 virus per gram of lung and nasal tissue and at doses less than palivizumab. A recombinant RSV F nanoparticle vaccine protected lower and upper respiratory tract against both RSV A and B strain infection and induced polyclonal palivizumab competing antibodies similar to but potentially more broadly protective against RSV than palivizumab.
Vaccine | 2011
Ye V. Liu; Michael J. Massare; Dale L. Barnard; Thomas Kort; Margret Nathan; Lei Wang; Gale Smith
Abstract SARS-CoV was the cause of the global pandemic in 2003 that infected over 8000 people in 8 months. Vaccines against SARS are still not available. We developed a novel method to produce high levels of a recombinant SARS virus-like particles (VLPs) vaccine containing the SARS spike (S) protein and the influenza M1 protein using the baculovirus insect cell expression system. These chimeric SARS VLPs have a similar size and morphology to the wild type SARS-CoV. We tested the immunogenicity and protective efficacy of purified chimeric SARS VLPs and full length SARS S protein vaccines in a mouse lethal challenge model. The SARS VLP vaccine, containing 0.8μg of SARS S protein, completely protected mice from death when administered intramuscular (IM) or intranasal (IN) routes in the absence of an adjuvant. Likewise, the SARS VLP vaccine, containing 4μg of S protein without adjuvant, reduced lung virus titer to below detectable level, protected mice from weight loss, and elicited a high level of neutralizing antibodies against SARS-CoV. Sf9 cell-produced full length purified SARS S protein was also an effective vaccine against SARS-CoV but only when co-administered IM with aluminum hydroxide. SARS-CoV VLPs are highly immunogenic and induce neutralizing antibodies and provide protection against lethal challenge. Sf9 cell-based VLP vaccines are a potential tool to provide protection against novel pandemic agents.
Vaccine | 2016
Karin Lövgren Bengtsson; Haifeng Song; Linda Stertman; Ye Liu; David Flyer; Michael J. Massare; Ren Huan Xu; Bin Zhou; Hanxin Lu; Steve A. Kwilas; Timothy Hahn; Eloi Kpamegan; Jay W. Hooper; Ricardo Carrion; Gregory M. Glenn; Gale Smith
Ebola virus (EBOV) causes severe hemorrhagic fever for which there is no approved treatment or preventive vaccine. Immunological correlates of protective immunity against EBOV disease are not well understood. However, non-human primate studies have associated protection of experimental vaccines with binding and neutralizing antibodies to the EBOV glycoprotein (GP) as well as EBOV GP-specific CD4(+) and CD8(+) T cells. In this report a full length, unmodified Zaire EBOV GP gene from the 2014 EBOV Makona strain (EBOV/Mak) was cloned into a baculovirus vector. Recombinant EBOV/Mak GP was produced in Sf9 insect cells as glycosylated trimers and, when purified, formed spherical 30-40 nm particles. In mice, EBOV/Mak GP co-administered with the saponin adjuvant Matrix-M was significantly more immunogenic, as measured by virus neutralization titers and anti-EBOV/Mak GP IgG as compared to immunization with AlPO4 adjuvanted or non-adjuvanted EBOV/Mak GP. Similarly, antigen specific T cells secreting IFN-γ were induced most prominently by EBOV/Mak GP with Matrix-M. Matrix-M also enhanced the frequency of antigen-specific germinal center B cells and follicular helper T (TFH) cells in the spleen in a dose-dependent manner. Immunization with EBOV/Mak GP with Matrix-M was 100% protective in a lethal viral challenge murine model; whereas no protection was observed with the AlPO4 adjuvant and only 10% (1/10) mice were protected in the EBOV/Mak GP antigen alone group. Matrix-M adjuvanted vaccine induced a rapid onset of specific IgG and neutralizing antibodies, increased frequency of multifunctional CD4+ and CD8(+) T cells, specific TFH cells, germinal center B cells, and persistence of EBOV GP-specific plasma B cells in the bone marrow. Taken together, the addition of Matrix-M adjuvant to the EBOV/Mak GP nanoparticles enhanced both B and T-cell immune stimulation which may be critical for an Ebola subunit vaccine with broad and long lasting protective immunity.
Virology | 2017
Gale Smith; Xiangjie Sun; Yaohui Bai; Ye V. Liu; Michael J. Massare; Melissa B. Pearce; Jessica A. Belser; Taronna R. Maines; Hannah M. Creager; Gregory M. Glenn; David Flyer; Peter Pushko; Min Z. Levine; Terrence M. Tumpey
Avian influenza A (H5N1) viruses represent a growing threat for an influenza pandemic. The presence of widespread avian influenza virus infections further emphasizes the need for vaccine strategies for control of pre-pandemic H5N1 and other avian influenza subtypes. Influenza neuraminidase (NA) vaccines represent a potential strategy for improving vaccines against avian influenza H5N1 viruses. To evaluate a strategy for NA vaccination, we generated a recombinant influenza virus-like particle (VLP) vaccine comprised of the NA protein of A/Indonesia/05/2005 (H5N1) virus. Ferrets vaccinated with influenza N1 NA VLPs elicited high-titer serum NA-inhibition (NI) antibody titers and were protected from lethal challenge with A/Indonesia/05/2005 virus. Moreover, N1-immune ferrets shed less infectious virus than similarly challenged control animals. In contrast, ferrets administered control N2 NA VLPs were not protected against H5N1 virus challenge. These results provide support for continued development of NA-based vaccines against influenza H5N1 viruses.
Vaccine | 2017
Gale Smith; Ye Liu; David Flyer; Michael J. Massare; Bin Zhou; Nita Patel; Larry R. Ellingsworth; Maggie Lewis; James F. Cummings; Greg Glenn
Influenza viruses frequently acquire mutations undergoing antigenic drift necessitating annual evaluation of vaccine strains. Highly conserved epitopes have been identified in the hemagglutinin (HA) head and stem regions, however, current influenza vaccines induce only limited responses to these conserved sites. Here, we describe a novel seasonal recombinant HA nanoparticle influenza vaccine (NIV) formulated with a saponin-based adjuvant, Matrix-M™. NIV induced hemagglutination inhibition (HAI) and microneutralizing (MN) antibodies against a broad range of influenza A(H3N2) subtypes. In a comparison of NIV against standard-dose and high-dose inactivated influenza vaccines (IIV and IIV-HD, respectively) in ferrets NIV elicited HAI and MN responses exceeding those induced by IIV-HD against homologous A(H3N2) by 7 fold, A(H1N1) by 26 fold, and B strain viruses by 2 fold. NIV also induced MN responses against all historic A/H3N2 strains tested, spanning more than a decade of viral evolution from the 2000-2017 influenza seasons whereas IIV and IIV-HD induced HAI and MN responses were largely directed against the homologous A(H3N2), A(H1N1), and B virus strains. NIV induced superior protection compared to IIV and IIV-HD in ferrets challenged with a homologous or 10-year drifted influenza A(H3N2) strain. HAI positive and HAI negative neutralizing monoclonal antibodies derived from mice immunized with NIV were active against homologous and drifted influenza A(H3N2) strains. Taken together these observations suggest that NIV can induce responses to one or more highly conserved HA head and stem epitopes and result in highly neutralizing antibodies against both homologous and drift strains.