Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael J. Mauro is active.

Publication


Featured researches published by Michael J. Mauro.


The New England Journal of Medicine | 2012

Ponatinib in Refractory Philadelphia Chromosome–Positive Leukemias

Jorge Cortes; Hagop M. Kantarjian; Neil P. Shah; Dale Bixby; Michael J. Mauro; Ian W. Flinn; Thomas O'Hare; Simin Hu; Narayana I. Narasimhan; Victor M. Rivera; Tim Clackson; Christopher D. Turner; Frank G. Haluska; Brian J. Druker; Michael W. Deininger; Moshe Talpaz

BACKGROUND Resistance to tyrosine kinase inhibitors in patients with chronic myeloid leukemia (CML) and Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph-positive ALL) is frequently caused by mutations in the BCR-ABL kinase domain. Ponatinib (AP24534) is a potent oral tyrosine kinase inhibitor that blocks native and mutated BCR-ABL, including the gatekeeper mutant T315I, which is uniformly resistant to tyrosine kinase inhibitors. METHODS In this phase 1 dose-escalation study, we enrolled 81 patients with resistant hematologic cancers, including 60 with CML and 5 with Ph-positive ALL. Ponatinib was administered once daily at doses ranging from 2 to 60 mg. Median follow-up was 56 weeks (range, 2 to 140). RESULTS Dose-limiting toxic effects included elevated lipase or amylase levels and pancreatitis. Common adverse events were rash, myelosuppression, and constitutional symptoms. Among Ph-positive patients, 91% had received two or more approved tyrosine kinase inhibitors, and 51% had received all three approved tyrosine kinase inhibitors. Of 43 patients with chronic-phase CML, 98% had a complete hematologic response, 72% had a major cytogenetic response, and 44% had a major molecular response. Of 12 patients who had chronic-phase CML with the T315I mutation, 100% had a complete hematologic response and 92% had a major cytogenetic response. Of 13 patients with chronic-phase CML without detectable mutations, 100% had a complete hematologic response and 62% had a major cytogenetic response. Responses among patients with chronic-phase CML were durable. Of 22 patients with accelerated-phase or blast-phase CML or Ph-positive ALL, 36% had a major hematologic response and 32% had a major cytogenetic response. CONCLUSIONS Ponatinib was highly active in heavily pretreated patients with Ph-positive leukemias with resistance to tyrosine kinase inhibitors, including patients with the BCR-ABL T315I mutation, other mutations, or no mutations. (Funded by Ariad Pharmaceuticals and others; ClinicalTrials.gov number, NCT00660920.).


Journal of Clinical Oncology | 2002

STI571: A Paradigm of New Agents for Cancer Therapeutics

Michael J. Mauro; Michael O'Dwyer; Michael C. Heinrich; Brian J. Druker

STI571 exemplifies the successful development of a rationally designed, molecularly targeted therapy for the treatment of a specific cancer. This article reviews the identification of Bcr-Abl as a therapeutic target in chronic myelogenous leukemia and the steps in the development of an agent to specifically inactivate this abnormality. Issues related to clinical trials of molecularly targeted agents are discussed, including dose selection, optimizing therapy, and predicting response, as are possible mechanisms of resistance to STI571. Lastly, the potential use of STI571 in other malignancies and the translation of this paradigm to other malignancies are explored.


Leukemia | 2013

Rates of peripheral arterial occlusive disease in patients with chronic myeloid leukemia in the chronic phase treated with imatinib, nilotinib, or non-tyrosine kinase therapy: a retrospective cohort analysis.

Frank Giles; Michael J. Mauro; F. Hong; C. E. Ortmann; C. McNeill; Richard C. Woodman; Andreas Hochhaus; P. le Coutre; G. Saglio

Peripheral arterial occlusive disease (PAOD) occurs in patients with chronic phase chronic myeloid leukemia (CML-CP) treated with tyrosine kinase inhibitors (TKIs). The risk of developing PAOD on TKI therapy is unknown and causality has not been established. Patients with CML-CP from three randomized phase III studies (IRIS, TOPS and ENESTnd) were divided into three cohorts: no TKI (cohort 1; n=533), nilotinib (cohort 2; n=556) and imatinib (cohort 3; n=1301). Patients with atherosclerotic risk factors were not excluded. Data were queried for terms indicative of PAOD. Overall, 3, 7 and 2 patients in cohorts 1, 2 and 3, respectively, had PAOD; 11/12 patients had baseline PAOD risk factors. Compared with that of cohort 1, exposure-adjusted risks of PAOD for cohorts 2 and 3 were 0.9 (95% CI, 0.2–3.3) and 0.1 (95% CI, 0.0–0.5), respectively. Multivariate logistic regression revealed that nilotinib had no impact on PAOD rates compared with no TKI, whereas imatinib had decreased rates of PAOD compared with no TKI. Nilotinib was associated with higher rates of PAOD versus imatinib. Baseline assessments, preferably within clinical studies, of PAOD and associated risk factors should occur when initiating TKI therapy in CML; patients should receive monitoring and treatment according to the standard of care for these comorbidities.


Clinical Cancer Research | 2007

A half-log increase in BCR-ABL RNA predicts a higher risk of relapse in patients with chronic myeloid leukemia with an imatinib-induced complete cytogenetic response.

Richard D. Press; Chad Galderisi; Rui Yang; Carole Rempfer; Stephanie G. Willis; Michael J. Mauro; Brian J. Druker; Michael W. Deininger

Purpose: Imatinib induces a complete cytogenetic response (CCR) in most chronic myeloid leukemia patients in chronic phase. Although CCR is usually durable, a minority of patients relapse. Biomarkers capable of predicting those CCR patients with a higher risk of relapse would improve therapeutic management. Experimental Design: To assess whether changes in BCR-ABL RNA levels are a prognostic biomarker predictive of relapse, we regularly monitored transcript levels [every 3 months (median)] in 90 patients with CCR during 49 months (median) of imatinib therapy. Results: Throughout follow-up, the 20 patients with eventual relapse had higher transcript levels than the durable responders. Major molecular response (MMR; >3-log reduction of BCR-ABL RNA) was attained by 76 patients (12 with subsequent relapse) and was a significant predictor of prolonged relapse-free survival (P = 0.0008). A minimal 0.5-log increase in transcripts (before relapse; experienced by 42 patients, 16 with subsequent relapse) conveyed a significantly shorter relapse-free survival (P = 0.0017). Loss of MMR (transcript increase to <2.5-log reduction, before relapse; experienced by 33 patients, 11 with subsequent relapse) was also predictive of shortened relapse-free survival (P = 0.0003). A complete molecular response (undetectable transcripts by nested PCR) was attained by 28 MMR patients (one with subsequent relapse) and conveyed a significantly prolonged relapse-free survival (P = 0.0052). Conclusions: In chronic myeloid leukemia patients with an imatinib-induced CCR, a minimal half-log increase in BCR-ABL RNA (including loss of MMR) is a significant risk factor for future relapse. The achievement of a complete molecular response imparts longer progression-free survival than the achievement of an MMR.


Leukemia | 2003

Demonstration of Philadelphia chromosome negative abnormal clones in patients with chronic myelogenous leukemia during major cytogenetic responses induced by imatinib mesylate

Michael E. O'Dwyer; K M Gatter; Marc Loriaux; Brian J. Druker; Susan B. Olson; R E Magenis; Helen Lawce; Michael J. Mauro; Richard T. Maziarz; Rita M. Braziel

Imatinib mesylate, an Abl-specific kinase inhibitor, produces sustained complete hematologic responses (CHR) and major cytogenetic responses (MCR) in chronic myeloid leukemia (CML) patients, but long-term outcomes in these patients are not yet known. This article reports the identification of clonal abnormalities in cells lacking detectable Philadelphia (Ph) chromosome/BCR–ABL rearrangements from seven patients with chronic- or accelerated-phase CML, who were treated with imatinib. All seven patients were refractory or intolerant to interferon therapy. Six of seven patients demonstrated MCR and one patient, who had a cryptic translocation, achieved low-level positivity (2.5%) for BCR–ABL by fluorescence in situ hybridization. The median duration of imatinib treatment before the identification of cytogenetic abnormalities in BCR–ABL-negative cells was 13 months. The most common cytogenetic abnormality was trisomy 8, documented in three patients. All patients had varying degrees of dysplastic morphologic abnormalities. One patient exhibited increased numbers of marrow blasts, yet consistently demonstrated no Ph-positive metaphases and the absence of morphologic features of CML. The presence of clonal abnormalities in Ph-negative cells of imatinib-treated CML patients with MCR and CHR highlights the importance of routine metaphase cytogenetic testing and long-term follow-up of all imatinib-treated patients.


Blood | 2009

Epidemiologic study on survival of chronic myeloid leukemia and Ph+ acute lymphoblastic leukemia patients with BCR-ABL T315I mutation

Franck E. Nicolini; Michael J. Mauro; Giovanni Martinelli; Dong-Wook Kim; Simona Soverini; Martin C. Müller; Andreas Hochhaus; Jorge Cortes; Charles Chuah; Inge Høgh Dufva; Jane F. Apperley; Fumiharu Yagasaki; Jay D. Pearson; Senaka Peter; Cesar Sanz Rodriguez; Claude Preudhomme; Francis J. Giles; John M. Goldman; Wei Zhou

The BCR-ABL T315I mutation represents a major mechanism of resistance to tyrosine kinase inhibitors (TKIs). The objectives of this retrospective observational study were to estimate overall and progression-free survival for chronic myeloid leukemia in chronic-phase (CP), accelerated-phase (AP), or blastic-phase (BP) and Philadelphia chromosome-positive (Ph)(+) acute lymphoblastic leukemia (ALL) patients with T315I mutation. Medical records of 222 patients from 9 countries were reviewed; data were analyzed using log-rank tests and Cox proportional hazard models. Median age at T315I mutation detection was 54 years; 57% cases were men. Median time between TKI treatment initiation and T315I mutation detection was 29.2, 15.4, 5.8, and 9.1 months, respectively, for CP, AP, BP, and Ph(+) ALL patients. After T315I mutation detection, second-generation TKIs were used in 56% of cases, hydroxyurea in 39%, imatinib in 35%, cytarabine in 26%, MK-0457 in 11%, stem cell transplantation in 17%, and interferon-alpha in 6% of cases. Median overall survival from T315I mutation detection was 22.4, 28.4, 4.0, and 4.9 months, and median progression-free survival was 11.5, 22.2, 1.8, and 2.5 months, respectively, for CP, AP, BP, and Ph(+) ALL patients. These results confirm that survival of patients harboring a T315I mutation is dependent on disease phase at the time of mutation detection.


Leukemia | 2007

Mutations of the BCR-ABL-kinase domain occur in a minority of patients with stable complete cytogenetic response to imatinib

Daniel W. Sherbenou; Matthew J. Wong; A. Humayun; Laura McGreevey; P. Harrell; Rui Yang; Michael J. Mauro; Michael C. Heinrich; Richard D. Press; Brian J. Druker; Michael W. Deininger

Residual leukemia is demonstrable by reverse transcriptase-polymerase chain reaction in most patients with chronic myeloid leukemia who obtain a complete cytogenetic response (CCR) to imatinib. In patients who relapse during imatinib therapy, a high rate of mutations in the kinase domain of BCR-ABL have been identified, but the mechanisms underlying disease persistence in patients with a CCR are poorly characterized. To test whether kinase domain mutations are a common mechanism of disease persistence, we studied patients in stable CCR. Mutations were demonstrated in eight of 42 (19%) patients with successful amplification and sequencing of BCR-ABL. Mutation types were those commonly associated with acquired drug resistance. Four patients with mutations had a concomitant rise of BCR-ABL transcript levels, two of whom subsequently relapsed; the remaining four did not have an increase in transcript levels and follow-up samples, when amplifiable, were wild type. BCR-ABL-kinase domain mutations in patients with a stable CCR are infrequent, and their detection does not consistently predict relapse. Alternative mechanisms must be responsible for disease persistence in the majority of patients.


The New England Journal of Medicine | 2016

Efficacy and Safety of Midostaurin in Advanced Systemic Mastocytosis

Jason Gotlib; Hanneke C. Kluin-Nelemans; Tracy I. George; Cem Akin; Karl Sotlar; Olivier Hermine; Farrukh T. Awan; Elizabeth O. Hexner; Michael J. Mauro; David Sternberg; Matthieu Villeneuve; Alice Huntsman Labed; Eric J. Stanek; Karin Hartmann; Hans Peter Horny; Peter Valent; Andreas Reiter

BACKGROUND Advanced systemic mastocytosis comprises rare hematologic neoplasms that are associated with a poor prognosis and lack effective treatment options. The multikinase inhibitor midostaurin inhibits KIT D816V, a primary driver of disease pathogenesis. METHODS We conducted an open-label study of oral midostaurin at a dose of 100 mg twice daily in 116 patients, of whom 89 with mastocytosis-related organ damage were eligible for inclusion in the primary efficacy population; 16 had aggressive systemic mastocytosis, 57 had systemic mastocytosis with an associated hematologic neoplasm, and 16 had mast-cell leukemia. The primary outcome was the best overall response. RESULTS The overall response rate was 60% (95% confidence interval [CI], 49 to 70); 45% of the patients had a major response, which was defined as complete resolution of at least one type of mastocytosis-related organ damage. Response rates were similar regardless of the subtype of advanced systemic mastocytosis, KIT mutation status, or exposure to previous therapy. The median best percentage changes in bone marrow mast-cell burden and serum tryptase level were -59% and -58%, respectively. The median overall survival was 28.7 months, and the median progression-free survival was 14.1 months. Among the 16 patients with mast-cell leukemia, the median overall survival was 9.4 months (95% CI, 7.5 to not estimated). Dose reduction owing to toxic effects occurred in 56% of the patients; re-escalation to the starting dose was feasible in 32% of those patients. The most frequent adverse events were low-grade nausea, vomiting, and diarrhea. New or worsening grade 3 or 4 neutropenia, anemia, and thrombocytopenia occurred in 24%, 41%, and 29% of the patients, respectively, mostly in those with preexisting cytopenias. CONCLUSIONS In this open-label study, midostaurin showed efficacy in patients with advanced systemic mastocytosis, including the highly fatal variant mast-cell leukemia. (Funded by Novartis Pharmaceuticals and others; ClinicalTrials.gov number, NCT00782067.).


Blood | 2009

Determining the rise in BCR-ABL RNA that optimally predicts a kinase domain mutation in patients with chronic myeloid leukemia on imatinib

Richard D. Press; Stephanie G. Willis; Jennifer Laudadio; Michael J. Mauro; Michael W. Deininger

In imatinib-treated chronic myeloid leukemia (CML), secondary drug resistance is often caused by mutations in the BCR-ABL kinase domain (KD). As alternative therapies are available for imatinib resistance, early identification of mutations may prevent disease progression. Because most patients are routinely monitored by BCR-ABL quantitative polymerase chain reaction (PCR), it is important to define the optimal increase in BCR-ABL that should trigger mutation testing. Expert panels have provisionally recommended a 10-fold BCR-ABL increase as the trigger for mutation screening, acknowledging the lack of consensus. To address this question, we monitored 150 CML patients by quantitative PCR and DNA sequencing. Thirty-five different mutations were identified in 53 patients, and, during 22.5 months (median) of follow-up after sequencing, mutations were significantly predictive of shorter progression-free survival. An unbiased receiver operating characteristic analysis identified a 2.6-fold increase in BCR-ABL RNA as the optimal cutoff for predicting a concomitant KD mutation, with a sensitivity of 77% (94% if including subsequent samples). The 2.6-fold threshold approximated the analytic precision limit of our PCR assay. In contrast, transcript rise cutoffs of 5-fold or greater had poor diagnostic sensitivity and no significant association with mutations. We conclude that the currently recommended 10-fold threshold to trigger mutation screening is insensitive and not universally applicable.


Cancer | 2011

Intolerance to tyrosine kinase inhibitors in chronic myeloid leukemia

Javier Pinilla-Ibarz; Jorge Cortes; Michael J. Mauro

Tyrosine kinase inhibitor (TKI) treatment targeting breakpoint cluster region‐Abelson murine leukemia virus, the cause of chronic myeloid leukemia (CML), has revolutionized therapy for patients with this disease. The majority of patients with CML maintain favorable responses with long‐term imatinib therapy; however, the availability of the second‐generation TKIs nilotinib and dasatinib limits the need for patients intolerant to imatinib to continue with therapy. Unfortunately, there is currently no standard definition of intolerance to imatinib. Common Toxicity Criteria for grading adverse events, designed to identify acute toxicities, are often used to determine intolerance. However, because CML therapies are long‐term, patient quality of life may provide a better measure of true intolerance. Several general methods of quantifying patient quality of life are in use for patients with CML, and a CML‐specific variant of the M. D. Anderson Symptom Inventory is in development. An appropriate and consistent definition of intolerance will provide clinicians with an algorithm for managing their patients with severe or chronic adverse events during treatment with imatinib. As more long‐term data become available for newer TKIs, the definition of intolerance in the context of CML treatment will continue to evolve to maximize the likelihood of durable responses and superior quality of life for patients. Cancer 2011.

Collaboration


Dive into the Michael J. Mauro's collaboration.

Top Co-Authors

Avatar

Jorge Cortes

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian J. Druker

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Neil P. Shah

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jerald P. Radich

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Hagop M. Kantarjian

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stuart L. Goldberg

Hackensack University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge