Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael J Morwood is active.

Publication


Featured researches published by Michael J Morwood.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Phylogeny and ancient DNA of Sus provides insights into neolithic expansion in Island Southeast Asia and Oceania

Greger Larson; Thomas Cucchi; Masakatsu Fujita; Elizabeth Matisoo-Smith; Judith H. Robins; Atholl Anderson; Barry V. Rolett; Matthew Spriggs; Gaynor Dolman; Tae Hun Kim; Nguyen Thi Dieu Thuy; Ettore Randi; Moira Doherty; Rokus Awe Due; Robert Bollt; Tony Djubiantono; Bion Griffin; Michiko Intoh; Emile Keane; Patrick V. Kirch; Kuang-ti Li; Michael J Morwood; Lolita M. Pedriña; Philip Piper; Ryan Rabett; Peter Shooter; Gert D. van den Bergh; Eric West; Stephen Wickler; Jing Yuan

Human settlement of Oceania marked the culmination of a global colonization process that began when humans first left Africa at least 90,000 years ago. The precise origins and dispersal routes of the Austronesian peoples and the associated Lapita culture remain contentious, and numerous disparate models of dispersal (based primarily on linguistic, genetic, and archeological data) have been proposed. Here, through the use of mtDNA from 781 modern and ancient Sus specimens, we provide evidence for an early human-mediated translocation of the Sulawesi warty pig (Sus celebensis) to Flores and Timor and two later separate human-mediated dispersals of domestic pig (Sus scrofa) through Island Southeast Asia into Oceania. Of the later dispersal routes, one is unequivocally associated with the Neolithic (Lapita) and later Polynesian migrations and links modern and archeological Javan, Sumatran, Wallacean, and Oceanic pigs with mainland Southeast Asian S. scrofa. Archeological and genetic evidence shows these pigs were certainly introduced to islands east of the Wallace Line, including New Guinea, and that so-called “wild” pigs within this region are most likely feral descendants of domestic pigs introduced by early agriculturalists. The other later pig dispersal links mainland East Asian pigs to western Micronesia, Taiwan, and the Philippines. These results provide important data with which to test current models for human dispersal in the region.


Nature | 1998

Fission-track ages of stone tools and fossils on the east Indonesian island of Flores

Michael J Morwood; P. B. O'Sullivan; F. Aziz; A. Raza

The islands of Wallacea, located between the Southeast Asian (Sunda) and Australian (Sahul) continental areas, offer unique potential for the study of evolution and cultural change. Located east of Java and Bali, which were periodically connected to the Asian mainland, the Wallacean islands could only be reached by sea crossings. Consequently, before human intervention all these islands had impoverished faunas comprising only species that were capable of crossing water by swimming, rafting on flotsam, or by flying in sufficient numbers to establish biologically viable populations. Here we report zircon fission-track dates from two fossil sites on the Wallacean island of Flores. Tangi Talo, which has an endemic fauna, dates to 0.90 ± 0.07 Myr bp, whereas Mata Menge, where stone tools are found with elements of continental Southeast Asian fauna, dates to between 0.88 ± 0.07 and 0.80 ± 0.07 Myr bp. Even at times when the sea level was lowest, water crossings were necessary to reach Flores from Southeast Asia. We conclude that Homo erectus in this region was capable of repeated water crossings using watercraft.


Science | 2007

The primitive wrist of Homo floresiensis and its implications for hominin evolution

Matthew W. Tocheri; Caley M. Orr; Susan G. Larson; Thomas Sutikna; Jatmiko; E. Wahyu Saptomo; Rokus Awe Due; Tony Djubiantono; Michael J Morwood; William L. Jungers

Whether the Late Pleistocene hominin fossils from Flores, Indonesia, represent a new species, Homo floresiensis, or pathological modern humans has been debated. Analysis of three wrist bones from the holotype specimen (LB1) shows that it retains wrist morphology that is primitive for the African ape-human clade. In contrast, Neandertals and modern humans share derived wrist morphology that forms during embryogenesis, which diminishes the probability that pathology could result in the normal primitive state. This evidence indicates that LB1 is not a modern human with an undiagnosed pathology or growth defect; rather, it represents a species descended from a hominin ancestor that branched off before the origin of the clade that includes modern humans, Neandertals, and their last common ancestor.


Nature | 1997

Luminescence dating of rock art and past environments using mud-wasp nests in northern Australia

Richard G. Roberts; Grahame Walsh; Andrew Murray; Jon M Olley; Rhys Jones; Michael J Morwood; Claudio Tuniz; Ewan Lawson; Michael Macphail; Doreen Bowdery; Ian Naumann

Mud-nesting wasps are found in all of the main biogeographical regions of the world, and construct nests that become petrified after abandonment. Nests built by mud-dauber and potter wasps in rock shelters in northern Australia, often overlie, and occasionally underlie, prehistoric rock paintings. Mud nests contain pollen, spores and phytoliths from which information about local palaeovegetation can be gleaned. Here we report a new application of optical dating, using optically stimulated luminescence (OSL), and accelerator mass spectrometry (AMS) 14C dating of pollen to determine the ages of mud-wasp nests associated with rock paintings in the Kimberley region of Western Australia,. Optical dating of quartz sand (including the analysis of individual grains) embedded in the mud of fossilized nests shows that some anthropomorphic paintings are more than 17,000 years old. Reconstructions of past local environments are also possible from the range of pollen and phytolith types identified. This approach should have widespread application to studies of rock-art dating and late Quaternary environmental change on continents where mud-wasps once lived and other sources of palaeoecological information are absent.


Nature | 2010

Hominins on Flores, Indonesia, by one million years ago

Adam Brumm; Gitte M. Jensen; Gert D. van den Bergh; Michael J Morwood; Iwan Kurniawan; Fachroel Aziz; Michael Storey

Previous excavations at Mata Menge and Boa Lesa in the Soa Basin of Flores, Indonesia, recovered stone artefacts in association with fossilized remains of the large-bodied Stegodon florensis florensis. Zircon fission-track ages from these sites indicated that hominins had colonized the island by 0.88 ± 0.07 million years (Myr) ago. Here we describe the contents, context and age of Wolo Sege, a recently discovered archaeological site in the Soa Basin that has in situ stone artefacts and that lies stratigraphically below Mata Menge and immediately above the basement breccias of the basin. We show using 40Ar/39Ar dating that an ignimbrite overlying the artefact layers at Wolo Sege was erupted 1.02 ± 0.02 Myr ago, providing a new minimum age for hominins on Flores. This predates the disappearance from the Soa Basin of ‘pygmy’ Stegodon sondaari and Geochelone spp. (giant tortoise), as evident at the nearby site of Tangi Talo, which has been dated to 0.90 ± 0.07 Myr ago. It now seems that this extirpation or possible extinction event and the associated faunal turnover were the result of natural processes rather than the arrival of hominins. It also appears that the volcanic and fluvio-lacustrine deposits infilling the Soa Basin may not be old enough to register the initial arrival of hominins on the island.


Journal of Human Evolution | 2009

Descriptions of the upper limb skeleton of Homo floresiensis

Susan G. Larson; William L. Jungers; Matthew W. Tocheri; Caley M. Orr; Michael J Morwood; Thomas Sutikna; Rokhus Due Awe; Tony Djubiantono

Several bones of the upper extremity were recovered during excavations of Late Pleistocene deposits at Liang Bua, Flores, and these have been attributed to Homo floresiensis. At present, these upper limb remains have been assigned to six different individuals - LB1, LB2, LB3, LB4, LB5, and LB6. Several of these bones are complete or nearly so, but some are quite fragmentary. All skeletal remains recovered from Liang Bua were extremely fragile, but have now been stabilized and hardened in the laboratory in Jakarta. They are now curated in museum-quality containers at the National Research and Development Centre for Archaeology in Jakarta, Indonesia. These skeletal remains are described and illustrated photographically. The upper limb presents a unique mosaic of derived (human-like) and primitive morphologies, the combination of which is never found in either healthy or pathological modern humans.


Nature | 2006

Early stone technology on Flores and its implications for Homo floresiensis

Adam Brumm; Fachroel Aziz; Gerrit Van Den Bergh; Michael J Morwood; Mark W. Moore; Iwan Kurniawan; Douglas R Hobbs; Richard Fullagar

In the Soa Basin of central Flores, eastern Indonesia, stratified archaeological sites, including Mata Menge, Boa Lesa and Kobatuwa (Fig. 1), contain stone artefacts associated with the fossilized remains of Stegodon florensis, Komodo dragon, rat and various other taxa. These sites have been dated to 840–700 kyr bp (thousand years before present). The authenticity of the Soa Basin artefacts and their provenance have been demonstrated by previous work, but to quell lingering doubts, here we describe the context, attributes and production modes of 507 artefacts excavated at Mata Menge. We also note specific similarities, and apparent technological continuity, between the Mata Menge stone artefacts and those excavated from Late Pleistocene levels at Liang Bua cave, 50 km to the west. The latter artefacts, dated to between 95–74 and 12 kyr ago, are associated with the remains of a dwarfed descendent of S. florensis, Komodo dragon, rat and a small-bodied hominin species, Homo floresiensis, which had a brain size of about 400 cubic centimetres. The Mata Menge evidence negates claims that stone artefacts associated with H. floresiensis are so complex that they must have been made by modern humans (Homo sapiens).


Nature | 2016

Revised stratigraphy and chronology for Homo floresiensis at Liang Bua in Indonesia

Thomas Sutikna; Matthew W. Tocheri; Michael J Morwood; E. Wahyu Saptomo; Jatmiko; Rokus Due Awe; Sri Wasisto; Kira Westaway; Maxime Aubert; Bo Li; Jian-xin Zhao; Michael Storey; Brent V. Alloway; Mike W. Morley; Hanneke J. M. Meijer; Gerrit D van den Bergh; Rainer Grün; Anthony Dosseto; Adam Brumm; William L. Jungers; Richard G. Roberts

Homo floresiensis, a primitive hominin species discovered in Late Pleistocene sediments at Liang Bua (Flores, Indonesia), has generated wide interest and scientific debate. A major reason this taxon is controversial is because the H. floresiensis-bearing deposits, which include associated stone artefacts and remains of other extinct endemic fauna, were dated to between about 95 and 12 thousand calendar years (kyr) ago. These ages suggested that H. floresiensis survived until long after modern humans reached Australia by ~50 kyr ago. Here we report new stratigraphic and chronological evidence from Liang Bua that does not support the ages inferred previously for the H. floresiensis holotype (LB1), ~18 thousand calibrated radiocarbon years before present (kyr cal. bp), or the time of last appearance of this species (about 17 or 13–11 kyr cal. bp). Instead, the skeletal remains of H. floresiensis and the deposits containing them are dated to between about 100 and 60 kyr ago, whereas stone artefacts attributable to this species range from about 190 to 50 kyr in age. Whether H. floresiensis survived after 50 kyr ago—potentially encountering modern humans on Flores or other hominins dispersing through southeast Asia, such as Denisovans—is an open question.


Proceedings of the Prehistoric Society | 1987

The archaeology of social complexity in South-east Queensland

Michael J Morwood

The widespread alliance systems of Australian Aboriginal society had an economic and survival value in harsh environments, but in resource-rich areas such as South-east Queensland it is more a question of strategies for increasing regional carrying capacity. Recent archaeological results in the area, with evidence of increases in site numbers and artefact deposition rates and diversification of subsistence resources to include small-bodied species, show the development of new patterns of technology, economy and demography following major environmental changes in the post-Pleistocene period. Widespread changes in Australian prehistory around 4000 years ago may have been triggered in certain key areas such as South-east Queensland.


PLOS ONE | 2009

Dragon's Paradise Lost: Palaeobiogeography, Evolution and Extinction of the Largest-Ever Terrestrial Lizards (Varanidae)

Scott A. Hocknull; Philip Piper; Gerrit D van den Bergh; Rokus Awe Due; Michael J Morwood; Iwan Kurniawan

Background The largest living lizard species, Varanus komodoensis Ouwens 1912, is vulnerable to extinction, being restricted to a few isolated islands in eastern Indonesia, between Java and Australia, where it is the dominant terrestrial carnivore. Understanding how large-bodied varanids responded to past environmental change underpins long-term management of V. komodoensis populations. Methodology/Principal Findings We reconstruct the palaeobiogeography of Neogene giant varanids and identify a new (unnamed) species from the island of Timor. Our data reject the long-held perception that V. komodoensis became a giant because of insular evolution or as a specialist hunter of pygmy Stegodon. Phyletic giantism, coupled with a westward dispersal from mainland Australia, provides the most parsimonious explanation for the palaeodistribution of V. komodoensis and the newly identified species of giant varanid from Timor. Pliocene giant varanid fossils from Australia are morphologically referable to V. komodoensis suggesting an ultimate origin for V. komodoensis on mainland Australia (>3.8 million years ago). Varanus komodoensis body size has remained stable over the last 900,000 years (ka) on Flores, a time marked by major faunal turnovers, extinction of the islands megafauna, the arrival of early hominids by 880 ka, co-existence with Homo floresiensis, and the arrival of modern humans by 10 ka. Within the last 2000 years their populations have contracted severely. Conclusions/Significance Giant varanids were once a ubiquitous part of Subcontinental Eurasian and Australasian faunas during the Neogene. Extinction played a pivotal role in the reduction of their ranges and diversity throughout the late Quaternary, leaving only V. komodoensis as an isolated long-term survivor. The events over the last two millennia now threaten its future survival.

Collaboration


Dive into the Michael J Morwood's collaboration.

Top Co-Authors

Avatar

Thomas Sutikna

University of Wollongong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jatmiko

University of Wollongong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian-xin Zhao

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam Brumm

University of Wollongong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge