Michael J. O’Neill
University of Connecticut
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael J. O’Neill.
Chromosoma | 2009
Dawn M. Carone; Mark S. Longo; Gianni C. Ferreri; Laura Hall; Melissa Harris; Nicole Shook; Kira V. Bulazel; Benjamin R. Carone; Craig Obergfell; Michael J. O’Neill; Rachel J. O’Neill
The transcriptional framework of the eukaryotic centromere core has been described in budding yeast and rice, but for most eukaryotes and all vertebrates it remains largely unknown. The lack of large pericentric repeats in the tammar wallaby has made it possible to map and identify the transcriptional units at the centromere in a mammalian species for the first time. We show that these transcriptional units, comprised of satellites and a retrovirus, are bound by centromere proteins and that they are the source of a novel class of small RNA. The endogenous retrovirus from which these small RNAs are derived is now known to be in the centromere domain of several vertebrate classes. The discovery of this new RNA form brings together several independent lines of evidence that point to a conserved retroviral-encoded processed RNA entity within eukaryotic centromeres.
Development Genes and Evolution | 2005
Betty R. Lawton; Leila Sevigny; Craig Obergfell; David N. Reznick; Rachel J. O’Neill; Michael J. O’Neill
The parental conflict, or kinship, theory of genomic imprinting predicts that parent-specific gene expression may evolve in species in which parental investment in developing offspring is unequal. This theory explains many aspects of parent-of-origin transcriptional silencing of embryonic growth regulatory genes in mammals, but it has not been tested in any other live-bearing, placental animals. A major embryonic growth promoting gene with conserved function in all vertebrates is insulin-like growth factor 2 (IGF2). This gene is imprinted in both eutherians and marsupials, as are several genes that modulate IGF2 activity. We have tested for parent-of-origin influences on developmental expression of IGF2 in two poeciliid fish species, Heterandria formosa and Poeciliopsis prolifica, that have evolved placentation independently. We found IGF2 to be expressed bi-allelically throughout embryonic development in both species.
BMC Genomics | 2013
Nathaniel K. Jue; Michael B Murphy; Seth Kasowitz; Sohaib M Qureshi; Craig Obergfell; Sahar Elsisi; Robert J Foley; Rachel J. O’Neill; Michael J. O’Neill
BackgroundAn enduring question surrounding sex chromosome evolution is whether effective hemizygosity in the heterogametic sex leads inevitably to dosage compensation of sex-linked genes, and whether this compensation has been observed in a variety of organisms. Incongruence in the conclusions reached in some recent reports has been attributed to different high-throughput approaches to transcriptome analysis. However, recent reports each utilizing RNA-seq to gauge X-linked gene expression relative to autosomal gene expression also arrived at diametrically opposed conclusions regarding X chromosome dosage compensation in mammals.ResultsHere we analyze RNA-seq data from X-monosomic female human and mouse tissues, which are uncomplicated by genes that escape X-inactivation, as well as published RNA-seq data to describe relative X expression (RXE). We find that the determination of RXE is highly dependent upon a variety of computational, statistical and biological assumptions underlying RNA-seq analysis. Parameters implemented in short-read mapping programs, choice of reference genome annotation, expression data distribution, tissue source for RNA and RNA-seq library construction method have profound effects on comparing expression levels across chromosomes.ConclusionsOur analysis shows that the high number of paralogous gene families on the mammalian X chromosome relative to autosomes contributes to the ambiguity in RXE calculations, RNA-seq analysis that takes into account that single- and multi-copy genes are compensated differently supports the conclusion that, in many somatic tissues, the mammalian X is up-regulated compared to the autosomes.
Chromosome Research | 2013
Dawn M. Carone; Chu Zhang; Laura Hall; Craig Obergfell; Benjamin R. Carone; Michael J. O’Neill; Rachel J. O’Neill
The proper functioning of centromeres requires a complex cascade of epigenetic events involving chromatin and kinetochore assembly; however, the precise mechanism by which this cascade proceeds is unknown. The pivotal event during kinetochore formation is the “loading,” or deposition, of CENP-A. This histone H3 variant is specific to centromeres and replaces conventional H3 in centromeric chromatin. Failure to load CENP-A into mammalian centromeres in late telophase/early G1 of the cell cycle leads to malsegregation and cell division defects in subsequent cell cycles. Mounting evidence supports the hypothesis that an RNA component is involved, although how RNAs participate in centromere formation in mammals has remained unknown. Using the marsupial model, the tammar wallaby, we show that centromeric retroelements produce small RNAs and that hypermorphic expression of these centromeric small RNAs results in disruption of CENP-A localization. We propose that tight regulation of the processing of this new class of small RNAs, crasiRNAs, is an integral component of the epigenetic framework necessary for centromere establishment.
Mammalian Genome | 2010
E.E. Mlynarski; Craig Obergfell; Michael J. O’Neill; Rachel J. O’Neill
Multiple Genome Rearrangement (MGR) analysis was used to define the trajectory and pattern of chromosome rearrangement within muroid rodents. MGR was applied using 107 chromosome homologies between Mus, Rattus, Peromyscus, the muroid sister taxon Cricetulus griseus, and Sciurus carolinensis as a non-Muroidea outgroup, with specific attention paid to breakpoint reuse and centromere evolution. This analysis revealed a high level of chromosome breakpoint conservation between Rattus and Peromyscus and indicated that the chromosomes of Mus are highly derived. This analysis identified several conserved evolutionary breakpoints that have been reused multiple times during karyotypic evolution in rodents. Our data demonstrate a high level of reuse of breakpoints among muroid rodents, further supporting the “Fragile Breakage Model” of chromosome evolution. We provide the first analysis of rodent centromeres with respect to evolutionary breakpoints. By analyzing closely related rodent species we were able to clarify muroid rodent karyotypic evolution. We were also able to derive several high-resolution ancestral karyotypes and identify rearrangements specific to various stages of Muroidea evolution. These data were useful in further characterizing lineage-specific modes of chromosome evolution.
BMC Genomics | 2012
James Lindsay; Dawn M. Carone; Judy Brown; Laura Hall; Sohaib M Qureshi; Sarah E. Mitchell; Nicholas Jannetty; Greg Hannon; Marilyn B. Renfree; Andrew J. Pask; Michael J. O’Neill; Rachel J. O’Neill
BackgroundSmall RNAs have proven to be essential regulatory molecules encoded within eukaryotic genomes. These short RNAs participate in a diverse array of cellular processes including gene regulation, chromatin dynamics and genome defense. The tammar wallaby, a marsupial mammal, is a powerful comparative model for studying the evolution of regulatory networks. As part of the genome sequencing initiative for the tammar, we have explored the evolution of each of the major classes of mammalian small RNAs in an Australian marsupial for the first time, including the first genome-scale analysis of the newest class of small RNAs, centromere repeat associated short interacting RNAs (crasiRNAs).ResultsUsing next generation sequencing, we have characterized the major classes of small RNAs, micro (mi) RNAs, piwi interacting (pi) RNAs, and the centromere repeat associated short interacting (crasi) RNAs in the tammar. We examined each of these small RNA classes with respect to the newly assembled tammar wallaby genome for gene and repeat features, salient features that define their canonical sequences, and the constitution of both highly conserved and species-specific members. Using a combination of miRNA hairpin predictions and co-mapping with miRBase entries, we identified a highly conserved cluster of miRNA genes on the X chromosome in the tammar and a total of 94 other predicted miRNA producing genes. Mapping all miRNAs to the tammar genome and comparing target genes among tammar, mouse and human, we identified 163 conserved target genes. An additional nine genes were identified in tammar that do not have an orthologous miRNA target in human and likely represent novel miRNA-regulated genes in the tammar. A survey of the tammar gonadal piRNAs shows that these small RNAs are enriched in retroelements and carry members from both marsupial and tammar-specific repeat classes. Lastly, this study includes the first in-depth analyses of the newly discovered crasiRNAs. These small RNAs are derived largely from centromere-enriched retroelements, including a novel SINE.ConclusionsThis study encompasses the first analyses of the major classes of small RNAs for the newly completed tammar genome, validates preliminary annotations using deep sequencing and computational approaches, and provides a foundation for future work on tammar-specific as well as conserved, but previously unknown small RNA progenitors and targets identified herein. The characterization of new miRNA target genes and a unique profile for crasiRNAs has allowed for insight into multiple RNA mediated processes in the tammar, including gene regulation, species incompatibilities, centromere and chromosome function.
Genome Biology and Evolution | 2016
Nathaniel K. Jue; Paola G. Batta-Lona; Sarah Trusiak; Craig Obergfell; Ann Bucklin; Michael J. O’Neill; Rachel J. O’Neill
A preliminary genome sequence has been assembled for the Southern Ocean salp, Salpa thompsoni (Urochordata, Thaliacea). Despite the ecological importance of this species in Antarctic pelagic food webs and its potential role as an indicator of changing Southern Ocean ecosystems in response to climate change, no genomic resources are available for S. thompsoni or any closely related urochordate species. Using a multiple-platform, multiple-individual approach, we have produced a 318,767,936-bp genome sequence, covering >50% of the estimated 602 Mb (±173 Mb) genome size for S. thompsoni. Using a nonredundant set of predicted proteins, >50% (16,823) of sequences showed significant homology to known proteins and ∼38% (12,151) of the total protein predictions were associated with Gene Ontology functional information. We have generated 109,958 SNP variant and 9,782 indel predictions for this species, serving as a resource for future phylogenomic and population genetic studies. Comparing the salp genome to available assemblies for four other urochordates, Botryllus schlosseri, Ciona intestinalis, Ciona savignyi and Oikopleura dioica, we found that S. thompsoni shares the previously estimated rapid rates of evolution for these species. High mutation rates are thus independent of genome size, suggesting that rates of evolution >1.5 times that observed for vertebrates are a broad taxonomic characteristic of urochordates. Tests for positive selection implemented in PAML revealed a small number of genes with sites undergoing rapid evolution, including genes involved in ribosome biogenesis and metabolic and immune process that may be reflective of both adaptation to polar, planktonic environments as well as the complex life history of the salps. Finally, we performed an initial survey of small RNAs, revealing the presence of known, conserved miRNAs, as well as novel miRNA genes; unique piRNAs; and mature miRNA signatures for varying developmental stages. Collectively, these resources provide a genomic foundation supporting S. thompsoni as a model species for further examination of the exceptional rates and patterns of genomic evolution shown by urochordates. Additionally, genomic data will allow for the development of molecular indicators of key life history events and processes and afford new understandings and predictions of impacts of climate change on this key species of Antarctic pelagic ecosystems.
Cytogenetic and Genome Research | 2008
E.E. Mlynarski; Craig Obergfell; Willem Rens; Patricia C. M. O’Brien; C.M. Ramsdell; Michael J. Dewey; Michael J. O’Neill; Rachel J. O’Neill
The Mus musculus and Rattus norvegicus genomes have been extensively studied, yet despite the emergence of Peromyscus maniculatus as an NIH model for genome sequencing and biomedical research much remains unknown about the genome organization of Peromyscines. Contrary to their phylogenetic relationship, the genomes of Rattus and Peromyscus appear more similar at the gross karyotypic level than either does to Mus. We set out to define the chromosome homologies between Peromyscus, Mus and Rattus. Reciprocal cross-species chromosome painting and G-band homology assignments were used to delineate the conserved chromosome homology map between P. maniculatus and M. musculus. These data show that each species has undergone extensive chromosome rearrangements since they last shared a common ancestor 25 million years ago (mya). This analysis coupled with an inferred homology map with Rattus revealed a high level of chromosome conservation between Rattus and Peromyscus and indicated that the chromosomes of Mus are highly derived.
Genome Biology and Evolution | 2015
Mark S. Longo; Judy Brown; Chu Zhang; Michael J. O’Neill; Rachel J. O’Neill
Complex eukaryotic genomes are riddled with repeated sequences whose derivation does not coincide with phylogenetic history and thus is often unknown. Among such sequences, the capacity for transcriptional activity coupled with the adaptive use of reverse transcription can lead to a diverse group of genomic elements across taxa, otherwise known as selfish elements or mobile elements. Short interspersed nuclear elements (SINEs) are nonautonomous mobile elements found in eukaryotic genomes, typically derived from cellular RNAs such as tRNAs, 7SL or 5S rRNA. Here, we identify and characterize a previously unknown SINE derived from the 3′-end of the large ribosomal subunit (LSU or 28S rDNA) and transcribed via RNA polymerase III. This new element, SINE28, is represented in low-copy numbers in the human reference genome assembly, wherein we have identified 27 discrete loci. Phylogenetic analysis indicates these elements have been transpositionally active within primate lineages as recently as 6 MYA while modern humans still carry transcriptionally active copies. Moreover, we have identified SINE28s in all currently available assembled mammalian genome sequences. Phylogenetic comparisons indicate that these elements are frequently rederived from the highly conserved LSU rRNA sequences in a lineage-specific manner. We propose that this element has not been previously recognized as a SINE given its high identity to the canonical LSU, and that SINE28 likely represents one of possibly many unidentified, active transposable elements within mammalian genomes.
Cytogenetic and Genome Research | 2007
Betty R. Lawton; Craig Obergfell; Rachel J. O’Neill; Michael J. O’Neill
The South American opossum Monodelphis domestica has been a model organism for marsupials for many years and has recently been the subject of a large-scale genome sequencing effort that will provide the foundation for comparative studies of gene function and regulation. Genomic imprinting is one mechanism of gene regulation that has received increasing attention due to the impact of imprinting defects on development and disease. We have mapped the imprinted insulin-like growth factor II (IGF2) gene of M. domestica as a first step in understanding the regulatory mechanisms involved in genomic imprinting in this marsupial.