Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael J. Osborn is active.

Publication


Featured researches published by Michael J. Osborn.


Human Genetics | 1996

Mutational and functional analysis of the neurofibromatosis type 1 (NF1) gene

Meena Upadhyaya; Michael J. Osborn; Julie Helen Maynard; Mee Rhan Kim; Fuyuhiko Tamanoi; David Neil Cooper

Abstract Neurofibromatosis type 1 (NF1) is one of the most common autosomal dominant disorders. It is caused by mutations in the NF1 gene which comprises 60 exons and is located on chromosome 17q. The NF1 gene product, neurofibromin, displays partial homology to GTPase-activating protein (GAP). The GAP-related domain (GRD), encoded by exons 20–27a, is the only region of neurofibromin to which a biological function has been ascribed. A total of 320 unrelated NF1 patients were screened for mutations in the GRD-encoding region of the NF1 gene. Sixteen different lesions in the NF1 GRD region were identified in a total of 20 patients. Of these lesions, 14 are novel and together comprise three missense, two nonsense and three splice site mutations plus six deletions of between 1 and 4 bp. The effect of one of the missense mutations (R1391S) was studied by in vitro expression of a site-directed mutant and GAP activity assay. The mutant protein, R1391S, was found to be some 300-fold less active than wild-type NF1 GRD. The mutations reported in this study therefore provide further material for the functional analysis of neurofibromin as well as an insight into the mutational spectrum of the NF1 GRD.


Journal of Immunology | 2013

High-Affinity IgG Antibodies Develop Naturally in Ig-Knockout Rats Carrying Germline Human IgH/Igκ/Igλ Loci Bearing the Rat CH Region

Michael J. Osborn; Biao Ma; Suzanne Avis; Ashleigh Binnie; Jeanette Dilley; Xi Yang; Kevin Lindquist; Séverine Ménoret; Anne-Laure Iscache; Laure-Hélène Ouisse; Arvind Rajpal; Ignacio Anegon; Michael S. Neuberger; Roland Buelow; Marianne Brüggemann

Mice transgenic for human Ig loci are an invaluable resource for the production of human Abs. However, such mice often do not yield human mAbs as effectively as conventional mice yield mouse mAbs. Suboptimal efficacy in delivery of human Abs might reflect imperfect interaction between the human membrane IgH chains and the mouse cellular signaling machinery. To obviate this problem, in this study we generated a humanized rat strain (OmniRat) carrying a chimeric human/rat IgH locus (comprising 22 human VHs, all human D and JH segments in natural configuration linked to the rat CH locus) together with fully human IgL loci (12 Vκs linked to Jκ-Cκ and 16 Vλs linked to Jλ-Cλ). The endogenous Ig loci were silenced using designer zinc finger nucleases. Breeding to homozygosity resulted in a novel transgenic rat line exclusively producing chimeric Abs with human idiotypes. B cell recovery was indistinguishable from wild-type animals, and human V(D)J transcripts were highly diverse. Following immunization, the OmniRat strain performed as efficiently as did normal rats in yielding high-affinity serum IgG. mAbs, comprising fully human variable regions with subnanomolar Ag affinity and carrying extensive somatic mutations, are readily obtainable, similarly to conventional mAbs from normal rats.


Archivum Immunologiae Et Therapiae Experimentalis | 2015

Human Antibody Production in Transgenic Animals

Marianne Brüggemann; Michael J. Osborn; Biao Ma; Jasvinder Hayre; Suzanne Avis; Brian Lundstrom; Roland Buelow

Fully human antibodies from transgenic animals account for an increasing number of new therapeutics. After immunization, diverse human monoclonal antibodies of high affinity can be obtained from transgenic rodents, while large animals, such as transchromosomic cattle, have produced respectable amounts of specific human immunoglobulin (Ig) in serum. Several strategies to derive animals expressing human antibody repertoires have been successful. In rodents, gene loci on bacterial artificial chromosomes or yeast artificial chromosomes were integrated by oocyte microinjection or transfection of embryonic stem (ES) cells, while ruminants were derived from manipulated fibroblasts with integrated human chromosome fragments or human artificial chromosomes. In all strains, the endogenous Ig loci have been silenced by gene targeting, either in ES or fibroblast cells, or by zinc finger technology via DNA microinjection; this was essential for optimal production. However, comparisons showed that fully human antibodies were not as efficiently produced as wild-type Ig. This suboptimal performance, with respect to immune response and antibody yield, was attributed to imperfect interaction of the human constant region with endogenous signaling components such as the Igα/β in mouse, rat or cattle. Significant improvements were obtained when the human V-region genes were linked to the endogenous CH-region, either on large constructs or, separately, by site-specific integration, which could also silence the endogenous Ig locus by gene replacement or inversion. In animals with knocked-out endogenous Ig loci and integrated large IgH loci, containing many human Vs, all D and all J segments linked to endogenous C genes, highly diverse human antibody production similar to normal animals was obtained.


Gene | 2003

Using yeast to place human genes in functional categories

Nianshu Zhang; Michael J. Osborn; Paul Gitsham; Kuangyu Yen; J. Ross Miller; Stephen G. Oliver

The availability of the draft sequence of the human genome has created a pressing need to assign functions to each of the 35,000 or so genes that it defines. One useful approach for this purpose is to use model organisms for both bioinformatic and functional comparisons. We have developed a complementation system, based on the model eukaryote Saccharomyces cerevisiae, to clone human cDNAs that can functionally complement yeast essential genes. The system employs two regulatable promoters. One promoter, tetO (determining doxycycline-repressible expression), is used to control essential S. cerevisiae genes. The other, pMET3 (which is switched off in the presence of methionine), is employed to regulate the expression of mammalian cDNAs in yeast. We have demonstrated that this system is effective for both individual cDNA clones and for cDNA libraries, permitting the direct selection of functionally complementing clones. Three human cDNA libraries have been constructed and screened for clones that can complement specific essential yeast genes whose expression is switched off by the addition of doxycycline to the culture medium. The validity of each complementation was checked by showing that the yeast cells stop their growth in the presence of doxycycline and methionine, which represses the expression of the yeast and mammalian coding sequence, respectively. Using this system, we have screened 25 tetO replacement strains and succeeded in isolating human cDNAs complementing six essential yeast genes. In this way, we have uncovered a novel human ubiquitin-conjugating enzyme, have isolated a human cDNA clone that may function as a signal peptidase and have demonstrated that the functional segment of the human Psmd12 proteosome sub-unit contains a PINT domain.


Journal of Experimental Medicine | 2007

Heavy chain-only antibodies are spontaneously produced in light chain-deficient mice

Xiangang Zou; Michael J. Osborn; Daniel J. Bolland; Jennifer A. Smith; Daniel Corcos; Maureen Hamon; David Oxley; Amanda Hutchings; Geoff Morgan; Fátima Santos; Peter J. Kilshaw; Michael J. Taussig; Anne E. Corcoran; Marianne Brüggemann

In healthy mammals, maturation of B cells expressing heavy (H) chain immunoglobulin (Ig) without light (L) chain is prevented by chaperone association of the H chain in the endoplasmic reticulum. Camelids are an exception, expressing homodimeric IgGs, an antibody type that to date has not been found in mice or humans. In camelids, immunization with viral epitopes generates high affinity H chain–only antibodies, which, because of their smaller size, recognize clefts and protrusions not readily distinguished by typical antibodies. Developmental processes leading to H chain antibody expression are unknown. We show that L−/− (κ−/−λ−/−-deficient) mice, in which conventional B cell development is blocked at the immature B cell stage, produce diverse H chain–only antibodies in serum. The generation of H chain–only IgG is caused by the loss of constant (C) γ exon 1, which is accomplished by genomic alterations in CH1-circumventing chaperone association. These mutations can be attributed to errors in class switch recombination, which facilitate the generation of H chain–only Ig-secreting plasma cells. Surprisingly, transcripts with a similar deletion can be found in normal mice. Thus, naturally occurring H chain transcripts without CH1 (VHDJH-hinge-CH2-CH3) are selected for and lead to the formation of fully functional and diverse H chain–only antibodies in L−/− animals.


Blood | 2010

Immunoglobulin aggregation leading to Russell body formation is prevented by the antibody light chain.

Daniel Corcos; Michael J. Osborn; Louise S. Matheson; Fátima Santos; Xiangang Zou; Jennifer A. Smith; Geoff Morgan; Amanda Hutchings; Maureen Hamon; David Oxley; Marianne Brüggemann

Russell bodies (RBs) are intracellular inclusions filled with protein aggregates. In diverse lymphoid disorders these occur as immunoglobulin (Ig) deposits, accumulating in abnormal plasma or Mott cells. In heavy-chain deposition disease truncated antibody heavy-chains (HCs) are found, which bear a resemblance to diverse polypeptides produced in Ig light-chain (LC)-deficient (L(-/-)) mice. In L(-/-) animals, the known functions of LC, providing part of the antigen-binding site of an antibody and securing progression of B-cell development, may not be required. Here, we show a novel function of LC in preventing antibody aggregation. L(-/-) mice produce truncated HC naturally, constant region (C)gamma and Calpha lack C(H)1, and Cmicro is without C(H)1 or C(H)1 and C(H)2. Most plasma cells found in these mice are CD138(+) Mott cells, filled with RBs, formed by aggregation of HCs of different isotypes. The importance of LC in preventing HC aggregation is evident in knock-in mice, expressing Cmicro without C(H)1 and C(H)2, which only develop an abundance of RBs when LC is absent. These results reveal that preventing antibody aggregation is a major function of LC, important for understanding the physiology of heavy-chain deposition disease, and in general recognizing the mechanisms, which initiate protein conformational diseases.


Yeast | 2006

The relative merits of the tetO2 and tetO7 promoter systems for the functional analysis of heterologous genes in yeast and a compilation of essential yeast genes with tetO2 promoter substitutions

Jill A. Wishart; Michael J. Osborn; Manda E. Gent; Kuangyu Yen; Zorana Vujovic; Paul Gitsham; Nianshu Zhang; J. Ross Miller; Stephen G. Oliver

We have generated a collection of yeast strains, each of which has an essential yeast gene under the control of the tetracycline‐responsive, tetO, promoter. Screens using first‐generation promoter‐swap strains uncovered the non‐specific responsiveness of the tetO7 promoter to a known human transcription factor (hIRF‐1). Non‐specific regulation was not observed with the tetO2 promoter. Reporter assays have been used to demonstrate this phenomenon. Subsequent efforts to generate a collection of tetracycline‐regulatable strains have focused on the tetO2 promoter. These strains are available to the yeast community and can be used for functional genomics studies. Copyright


Molecular Immunology | 2008

Removal of the BiP-retention domain in Cμ permits surface deposition and developmental progression without L-chain

Xiangang Zou; Jennifer A. Smith; Daniel Corcos; Louise S. Matheson; Michael J. Osborn; Marianne Brüggemann

Nascent, full length, immunoglobulin (Ig) heavy (H)-chains are post-translationally associated with H-chain-binding protein (BiP or GRP78) in the endoplasmic reticulum (ER). The first constant (C) domain, CH1 of a C gene (Cmu, Cgamma, Calpha), is important for this interaction. The contact is released upon BiP replacement by conventional Ig light (L)-chain (kappa or lambda). Incomplete or mutated H-chains with removed variable (VH) and/or C(H)1 domain, as found in H-chain disease (HCD), can preclude stable BiP interaction. Progression in development after the preB cell stage is dependent on surface expression of IgM when association of a micro H-chain with a L-chain overcomes the retention by BiP. We show that IgM lacking the BiP-binding domain is displayed on the cell surface and elicits a signal that allows developmental progression even without the presence of L-chain. The results are reminiscent of single chain Ig secretion in camelids where developmental processes leading to the generation of fully functional H-chain-only antibodies are not understood. Furthermore, in the mouse the largest secondary lymphoid organ, the spleen, is not required for H-chain-only Ig expression and the CD5 survival signal may be obsolete for cells expressing truncated IgM.


Blood | 2011

B-cell receptors and heavy chain diseases: guilty by association?

Daniel Corcos; Michael J. Osborn; Louise S. Matheson

Heavy chain diseases (HCDs) are B-cell proliferative disorders characterized by the production of monoclonal, incomplete, immunoglobulin (Ig) heavy chains (HCs) without associated light chains (LCs). These abnormal HCs are produced as a consequence of HC gene alterations in the neoplastic B cells. HC gene alterations will also impact on surface HC, which is part of the B-cell receptor (BCR), a crucial player in lymphocyte activation by antigen. The selective advantage conferred to mutant cells by abnormal BCR without an antigen-binding domain may be explained by activation of ligand-independent signaling, in analogy to what has been shown for mutated oncogenic growth factor receptors. Here we review data obtained from mouse models showing abnormal, constitutive activity of HCD-BCR, and we discuss the possible mechanism involved, namely, aberrant spontaneous self-aggregation. This self-aggregation might occur as a consequence of escape from the chaperone immunoglobulin binding protein (BiP) and from the anti-aggregation effect of LC association. The concept of misfolding-induced signaling elaborated here may extend to other pathologies termed conformational diseases.


BMC Biotechnology | 2017

Antigen-specific single B cell sorting and expression-cloning from immunoglobulin humanized rats: a rapid and versatile method for the generation of high affinity and discriminative human monoclonal antibodies

Laure-Hélène Ouisse; Laetitia Gautreau-Rolland; Marie-Claire Devilder; Michael J. Osborn; Melinda Moyon; Jonathan Visentin; Frank Halary; Marianne Brüggemann; Roland Buelow; Ignacio Anegon; Xavier Saulquin

BackgroundThere is an ever-increasing need of monoclonal antibodies (mAbs) for biomedical applications and fully human binders are particularly desirable due to their reduced immunogenicity in patients. We have applied a strategy for the isolation of antigen-specific B cells using tetramerized proteins and single-cell sorting followed by reconstruction of human mAbs by RT-PCR and expression cloning.ResultsThis strategy, using human peripheral blood B cells, enabled the production of low affinity human mAbs against major histocompatibility complex molecules loaded with peptides (pMHC). We then implemented this technology using human immunoglobulin transgenic rats, which after immunization with an antigen of interest express high affinity-matured antibodies with human idiotypes. Using rapid immunization, followed by tetramer-based B-cell sorting and expression cloning, we generated several fully humanized mAbs with strong affinities, which could discriminate between highly homologous proteins (eg. different pMHC complexes).ConclusionsTherefore, we describe a versatile and more effective approach as compared to hybridoma generation or phage or yeast display technologies for the generation of highly specific and discriminative fully human mAbs that could be useful both for basic research and immunotherapeutic purposes.

Collaboration


Dive into the Michael J. Osborn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge