Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael J. Pankratz is active.

Publication


Featured researches published by Michael J. Pankratz.


PLOS Biology | 2005

Candidate gustatory interneurons modulating feeding behavior in the Drosophila brain.

Christoph Melcher; Michael J. Pankratz

Feeding is a fundamental activity of all animals that can be regulated by internal energy status or external sensory signals. We have characterized a zinc finger transcription factor, klumpfuss (klu), which is required for food intake in Drosophila larvae. Microarray analysis indicates that expression of the neuropeptide gene hugin (hug) in the brain is altered in klu mutants and that hug itself is regulated by food signals. Neuroanatomical analysis demonstrates that hug-expressing neurons project axons to the pharyngeal muscles, to the central neuroendocrine organ, and to the higher brain centers, whereas hug dendrites are innervated by external gustatory receptor-expressing neurons, as well as by internal pharyngeal chemosensory organs. The use of tetanus toxin to block synaptic transmission of hug neurons results in alteration of food intake initiation, which is dependent on previous nutrient condition. Our results provide evidence that hug neurons function within a neural circuit that modulates taste-mediated feeding behavior.


Journal of Endocrinology | 2007

Amino acids, taste circuits, and feeding behavior in Drosophila: towards understanding the psychology of feeding in flies and man

Christoph Melcher; Ruediger Bader; Michael J. Pankratz

Feeding can be regulated by a variety of external sensory stimuli such as olfaction and gustation, as well as by systemic internal signals of feeding status and metabolic needs. Faced with a major health epidemic in eating-related conditions, such as obesity and diabetes, there is an ever increasing need to dissect and understand the complex regulatory network underlying the multiple aspects of feeding behavior. In this minireview, we highlight the use of Drosophila in studying the neural circuits that control the feeding behavior in response to external and internal signals. In particular, we outline the work on the neuroanatomical and functional characterization of the newly identified hugin neuronal circuit. We focus on the pivotal role of the central nervous system in integrating external and internal feeding-relevant information, thus enabling the organism to make one of the most basic decisions - to eat or not to eat.


Current Biology | 2014

Single Serotonergic Neurons that Modulate Aggression in Drosophila

Olga V. Alekseyenko; Yick-Bun Chan; Maria de la Paz Fernandez; Torsten R. Bülow; Michael J. Pankratz; Edward A. Kravitz

Monoamine serotonin (5HT) has been linked to aggression for many years across species. However, elaboration of the neurochemical pathways that govern aggression has proven difficult because monoaminergic neurons also regulate other behaviors. There are approximately 100 serotonergic neurons in the Drosophila nervous system, and they influence sleep, circadian rhythms, memory, and courtship. In the Drosophila model of aggression, the acute shut down of the entire serotonergic system yields flies that fight less, whereas induced activation of 5HT neurons promotes aggression. Using intersectional genetics, we restricted the population of 5HT neurons that can be reproducibly manipulated to identify those that modulate aggression. Although similar approaches were used recently to find aggression-modulating dopaminergic and Fru(M)-positive peptidergic neurons, the downstream anatomical targets of the neurons that make up aggression-controlling circuits remain poorly understood. Here, we identified a symmetrical pair of serotonergic PLP neurons that are necessary for the proper escalation of aggression. Silencing these neurons reduced aggression in male flies, and activating them increased aggression in male flies. GFP reconstitution across synaptic partners (GRASP) analyses suggest that 5HT-PLP neurons form contacts with 5HT1A receptor-expressing neurons in two distinct anatomical regions of the brain. Activation of these 5HT1A receptor-expressing neurons, in turn, caused reductions in aggression. Our studies, therefore, suggest that aggression may be held in check, at least in part, by inhibitory input from 5HT1A receptor-bearing neurons, which can be released by activation of the 5HT-PLP neurons.


PLOS Biology | 2014

Selection of motor programs for suppressing food intake and inducing locomotion in the Drosophila brain.

Andreas Schoofs; Sebastian Hückesfeld; Philipp Schlegel; Anton Miroschnikow; Marc Peters; Malou Zeymer; Roland Spieß; Ann-Shyn Chiang; Michael J. Pankratz

This study reveals that a cluster of neurons expressing the neuropeptide hugin transmit inputs from higher brain centers to motor centers, thereby regulating feeding and locomotion in fruit fly larvae.


PLOS ONE | 2010

The Drosophila FoxA Ortholog Fork Head Regulates Growth and Gene Expression Downstream of Target of Rapamycin

Margret H. Bülow; Ruedi Aebersold; Michael J. Pankratz; Martin A. Jünger

Forkhead transcription factors of the FoxO subfamily regulate gene expression programs downstream of the insulin signaling network. It is less clear which proteins mediate transcriptional control exerted by Target of rapamycin (TOR) signaling, but recent studies in nematodes suggest a role for FoxA transcription factors downstream of TOR. In this study we present evidence that outlines a similar connection in Drosophila, in which the FoxA protein Fork head (FKH) regulates cellular and organismal size downstream of TOR. We find that ectopic expression and targeted knockdown of FKH in larval tissues elicits different size phenotypes depending on nutrient state and TOR signaling levels. FKH overexpression has a negative effect on growth under fed conditions, and this phenotype is not further exacerbated by inhibition of TOR via rapamycin feeding. Under conditions of starvation or low TOR signaling levels, knockdown of FKH attenuates the size reduction associated with these conditions. Subcellular localization of endogenous FKH protein is shifted from predominantly cytoplasmic on a high-protein diet to a pronounced nuclear accumulation in animals with reduced levels of TOR or fed with rapamycin. Two putative FKH target genes, CG6770 and cabut, are transcriptionally induced by rapamycin or FKH expression, and silenced by FKH knockdown. Induction of both target genes in heterozygous TOR mutant animals is suppressed by mutations in fkh. Furthermore, TOR signaling levels and FKH impact on transcription of the dFOXO target gene d4E-BP, implying a point of crosstalk with the insulin pathway. In summary, our observations show that an alteration of FKH levels has an effect on cellular and organismal size, and that FKH function is required for the growth inhibition and target gene induction caused by low TOR signaling levels.


eLife | 2016

Synaptic transmission parallels neuromodulation in a central food-intake circuit

Philipp Schlegel; Michael J. Texada; Anton Miroschnikow; Andreas Schoofs; Sebastian Hückesfeld; Marc Peters; Casey M Schneider-Mizell; Haluk Lacin; Feng Li; Richard D. Fetter; James W. Truman; Albert Cardona; Michael J. Pankratz

NeuromedinU is a potent regulator of food intake and activity in mammals. In Drosophila, neurons producing the homologous neuropeptide hugin regulate feeding and locomotion in a similar manner. Here, we use EM-based reconstruction to generate the entire connectome of hugin-producing neurons in the Drosophila larval CNS. We demonstrate that hugin neurons use synaptic transmission in addition to peptidergic neuromodulation and identify acetylcholine as a key transmitter. Hugin neuropeptide and acetylcholine are both necessary for the regulatory effect on feeding. We further show that subtypes of hugin neurons connect chemosensory to endocrine system by combinations of synaptic and peptide-receptor connections. Targets include endocrine neurons producing DH44, a CRH-like peptide, and insulin-like peptides. Homologs of these peptides are likewise downstream of neuromedinU, revealing striking parallels in flies and mammals. We propose that hugin neurons are part of an ancient physiological control system that has been conserved at functional and molecular level. DOI: http://dx.doi.org/10.7554/eLife.16799.001


Journal of Insect Physiology | 2014

Serotonergic pathways in the Drosophila larval enteric nervous system.

Andreas Schoofs; Sebastian Hückesfeld; Sandya Surendran; Michael J. Pankratz

The enteric nervous system is critical for coordinating diverse feeding-related behaviors and metabolism. We have characterized a cluster of four serotonergic neurons in Drosophila larval brain: cell bodies are located in the subesophageal ganglion (SOG) whose neuronal processes project into the enteric nervous system. Electrophysiological, calcium imaging and behavioral analyses indicate a functional role of these neurons in modulating foregut motility. We suggest that the axonal projections of this serotonergic cluster may be part of a brain-gut neural pathway that is functionally analogous to the vertebrate vagus nerve.


PLOS ONE | 2015

Localization of Motor Neurons and Central Pattern Generators for Motor Patterns Underlying Feeding Behavior in Drosophila Larvae.

Sebastian Hückesfeld; Andreas Schoofs; Philipp Schlegel; Anton Miroschnikow; Michael J. Pankratz

Motor systems can be functionally organized into effector organs (muscles and glands), the motor neurons, central pattern generators (CPG) and higher control centers of the brain. Using genetic and electrophysiological methods, we have begun to deconstruct the motor system driving Drosophila larval feeding behavior into its component parts. In this paper, we identify distinct clusters of motor neurons that execute head tilting, mouth hook movements, and pharyngeal pumping during larval feeding. This basic anatomical scaffold enabled the use of calcium-imaging to monitor the neural activity of motor neurons within the central nervous system (CNS) that drive food intake. Simultaneous nerve- and muscle-recordings demonstrate that the motor neurons innervate the cibarial dilator musculature (CDM) ipsi- and contra-laterally. By classical lesion experiments we localize a set of CPGs generating the neuronal pattern underlying feeding movements to the subesophageal zone (SEZ). Lesioning of higher brain centers decelerated all feeding-related motor patterns, whereas lesioning of ventral nerve cord (VNC) only affected the motor rhythm underlying pharyngeal pumping. These findings provide a basis for progressing upstream of the motor neurons to identify higher regulatory components of the feeding motor system.


Nature Communications | 2016

Central relay of bitter taste to the protocerebrum by peptidergic interneurons in the Drosophila brain

Sebastian Hückesfeld; Marc Peters; Michael J. Pankratz

Bitter is a taste modality associated with toxic substances evoking aversive behaviour in most animals, and the valence of different taste modalities is conserved between mammals and Drosophila. Despite knowledge gathered in the past on the peripheral perception of taste, little is known about the identity of taste interneurons in the brain. Here we show that hugin neuropeptide-containing neurons in the Drosophila larval brain are necessary for avoidance behaviour to caffeine, and when activated, result in cessation of feeding and mediates a bitter taste signal within the brain. Hugin neuropeptide-containing neurons project to the neurosecretory region of the protocerebrum and functional imaging demonstrates that these neurons are activated by bitter stimuli and by activation of bitter sensory receptor neurons. We propose that hugin neurons projecting to the protocerebrum act as gustatory interneurons relaying bitter taste information to higher brain centres in Drosophila larvae.


The Journal of Experimental Biology | 2017

The Ol1mpiad: concordance of behavioural faculties of stage 1 and stage 3 Drosophila larvae.

Maria J. Almeida-Carvalho; Dimitri Berh; Andreas Braun; Yi-chun Chen; Katharina Eichler; Claire Eschbach; Pauline Mj Fritsch; Bertram Gerber; Nina Hoyer; Xiaoyi Jiang; Jörg Kleber; Christian Klämbt; Christian König; Matthieu Louis; Birgit Michels; Anton Miroschnikow; Christen K. Mirth; Daisuke Miura; Thomas Niewalda; Nils Otto; Emmanouil Paisios; Michael J. Pankratz; Meike Petersen; Noel Ramsperger; Nadine Randel; Benjamin Risse; Timo Saumweber; Philipp Schlegel; Michael Schleyer; Peter Soba

ABSTRACT Mapping brain function to brain structure is a fundamental task for neuroscience. For such an endeavour, the Drosophila larva is simple enough to be tractable, yet complex enough to be interesting. It features about 10,000 neurons and is capable of various taxes, kineses and Pavlovian conditioning. All its neurons are currently being mapped into a light-microscopical atlas, and Gal4 strains are being generated to experimentally access neurons one at a time. In addition, an electron microscopic reconstruction of its nervous system seems within reach. Notably, this electron microscope-based connectome is being drafted for a stage 1 larva – because stage 1 larvae are much smaller than stage 3 larvae. However, most behaviour analyses have been performed for stage 3 larvae because their larger size makes them easier to handle and observe. It is therefore warranted to either redo the electron microscopic reconstruction for a stage 3 larva or to survey the behavioural faculties of stage 1 larvae. We provide the latter. In a community-based approach we called the Ol1mpiad, we probed stage 1 Drosophila larvae for free locomotion, feeding, responsiveness to substrate vibration, gentle and nociceptive touch, burrowing, olfactory preference and thermotaxis, light avoidance, gustatory choice of various tastants plus odour–taste associative learning, as well as light/dark–electric shock associative learning. Quantitatively, stage 1 larvae show lower scores in most tasks, arguably because of their smaller size and lower speed. Qualitatively, however, stage 1 larvae perform strikingly similar to stage 3 larvae in almost all cases. These results bolster confidence in mapping brain structure and behaviour across developmental stages. Summary: A community-based survey of the behavioural faculties of stage 1 Drosophila larvae, providing a resource for relating these behavioural faculties to the upcoming connectome of their nervous system.

Collaboration


Dive into the Michael J. Pankratz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nils Otto

University of Münster

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge