Michael J. Parker
Boston Children's Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael J. Parker.
American Journal of Human Genetics | 2004
Carmel Toomes; Helen M. Bottomley; Richard M. Jackson; Katherine V. Towns; Sheila Scott; David A. Mackey; Jamie E. Craig; Li Jiang; Zhenglin Yang; Richard C. Trembath; Geoffrey Woodruff; Cheryl Y. Gregory-Evans; Kevin Gregory-Evans; Michael J. Parker; Graeme C.M. Black; Louise Downey; Kang Zhang; Chris F. Inglehearn
Familial exudative vitreoretinopathy (FEVR) is an inherited blinding disorder of the retinal vascular system. Autosomal dominant FEVR is genetically heterogeneous, but its principal locus, EVR1, is on chromosome 11q13-q23. The gene encoding the Wnt receptor frizzled-4 (FZD4) was recently reported to be the EVR1 gene, but our mutation screen revealed fewer patients harboring mutations than expected. Here, we describe mutations in a second gene at the EVR1 locus, low-density-lipoprotein receptor-related protein 5 (LRP5), a Wnt coreceptor. This finding further underlines the significance of Wnt signaling in the vascularization of the eye and highlights the potential dangers of using multiple families to refine genetic intervals in gene-identification studies.
The Journal of Neuroscience | 2004
Michael J. Parker; Shengli Zhao; David S. Bredt; Joshua R. Sanes; Guoping Feng
Neuronal cholinergic synapses play important roles in both the PNS and CNS. However, the mechanisms that regulate the formation, maturation, and stability of neuronal cholinergic synapses are poorly understood. In this study, we use the readily accessible mouse superior cervical ganglion (SCG) and submandibular ganglion (SMG) to examine the assembly of the postsynaptic complex of neuronal cholinergic synapses. We find that novel splicing forms of PSD93 (postsynaptic density 93) are expressed in SCG. By immunostaining, we show that PSD93 proteins precisely colocalize with neuronal nicotinic acetylcholine receptors (nAChRs) at synapses of the SCG and SMG. Subcellular fractionation demonstrates that PSD93 is enriched in the PSD fraction of SCG, and coimmunoprecipitation shows that PSD93 and neuronal nAChRs form a complex in vivo. Furthermore, two additional components of the well characterized glutamatergic postsynaptic complex, GKAP/SAPAP (guanylate kinase domain-associated protein/synapse-associated protein-associated protein) and Shank/ProSAP family proteins, are also present at neuronal cholinergic synapses. To assess the function of this protein complex at neuronal cholinergic synapses in vivo, we examined ganglia in mice that lack PSD93. We find that neuronal cholinergic synapses form properly in PSD93 null mice. After denervation, however, synaptic clusters of nAChRs disassemble much faster in mice lacking PSD93 than those in wild-type mice. These results demonstrate that PSD93 is a key component of the postsynaptic scaffold at neuronal cholinergic synapses and plays an important role in synaptic stability. In addition, these results suggest that the mechanism of postsynaptic scaffolding is conserved between neuronal cholinergic and glutamatergic synapses.
European Journal of Human Genetics | 2012
Siddharth Banka; Ratna Veeramachaneni; William Reardon; Emma Howard; Sancha Bunstone; Nicola Ragge; Michael J. Parker; Yanick J. Crow; Bronwyn Kerr; Helen Kingston; Kay Metcalfe; Kate Chandler; Alex Magee; Fiona Stewart; Vivienne McConnell; Deirdre E. Donnelly; Siren Berland; Gunnar Houge; Jenny Morton; Christine Oley; Nicole Revencu; Soo Mi Park; Sally Davies; Andrew E. Fry; Sally Ann Lynch; Harinder Gill; Susann Schweiger; Wayne W K Lam; John Tolmie; Shehla Mohammed
MLL2 mutations are detected in 55 to 80% of patients with Kabuki syndrome (KS). In 20 to 45% patients with KS, the genetic basis remains unknown, suggesting possible genetic heterogeneity. Here, we present the largest yet reported cohort of 116 patients with KS. We identified MLL2 variants in 74 patients, of which 47 are novel and a majority are truncating. We show that pathogenic missense mutations were commonly located in exon 48. We undertook a systematic facial KS morphology study of patients with KS at our regional dysmorphology meeting. Our data suggest that nearly all patients with typical KS facial features have pathogenic MLL2 mutations, although KS can be phenotypically variable. Furthermore, we show that MLL2 mutation-positive KS patients are more likely to have feeding problems, kidney anomalies, early breast bud development, joint dislocations and palatal malformations in comparison with MLL2 mutation-negative patients. Our work expands the mutation spectrum of MLL2 that may help in better understanding of this molecule, which is important in gene expression, epigenetic control of active chromatin states, embryonic development and cancer. Our analyses of the phenotype indicates that MLL2 mutation-positive and -negative patients differ systematically, and genetic heterogeneity of KS is not as extensive as previously suggested. Moreover, phenotypic variability of KS suggests that MLL2 testing should be considered even in atypical patients.
Human Mutation | 2013
Gijs W.E. Santen; Emmelien Aten; Anneke T. Vulto-van Silfhout; Caroline Pottinger; Bregje W.M. Bon; Ivonne J.H.M. Minderhout; Ronelle Snowdowne; Christian A.C. Lans; Merel W. Boogaard; Margot M.L. Linssen; Linda Vijfhuizen; Michiel J.R. Wielen; M.J. (Ellen) Vollebregt; Martijn H. Breuning; Marjolein Kriek; Arie van Haeringen; Johan T. den Dunnen; Alexander Hoischen; Jill Clayton-Smith; Bert B.A. Vries; Raoul C. M. Hennekam; Martine J. van Belzen; Mariam Almureikhi; Anwar Baban; Mafalda Barbosa; Tawfeg Ben-Omran; Katherine Berry; Stefania Bigoni; Odile Boute; Louise Brueton
De novo germline variants in several components of the SWI/SNF‐like BAF complex can cause Coffin–Siris syndrome (CSS), Nicolaides–Baraitser syndrome (NCBRS), and nonsyndromic intellectual disability. We screened 63 patients with a clinical diagnosis of CSS for these genes (ARID1A, ARID1B, SMARCA2, SMARCA4, SMARCB1, and SMARCE1) and identified pathogenic variants in 45 (71%) patients. We found a high proportion of variants in ARID1B (68%). All four pathogenic variants in ARID1A appeared to be mosaic. By using all variants from the Exome Variant Server as test data, we were able to classify variants in ARID1A, ARID1B, and SMARCB1 reliably as being pathogenic or nonpathogenic. For SMARCA2, SMARCA4, and SMARCE1 several variants in the EVS remained unclassified, underlining the importance of parental testing. We have entered all variant and clinical information in LOVD‐powered databases to facilitate further genotype–phenotype correlations, as these will become increasingly important because of the uptake of targeted and untargeted next generation sequencing in diagnostics. The emerging phenotype–genotype correlation is that SMARCB1 patients have the most marked physical phenotype and severe cognitive and growth delay. The variability in phenotype seems most marked in ARID1A and ARID1B patients. Distal limbs anomalies are most marked in ARID1A patients and least in SMARCB1 patients. Numbers are small however, and larger series are needed to confirm this correlation.
Postgraduate Medicine | 2009
Bradley F. Marple; James A. Stankiewicz; Fuad M. Baroody; James M. Chow; David B. Conley; Jacqueline P. Corey; Berrylin J. Ferguson; Robert C. Kern; Rodney P. Lusk; Robert M. Naclerio; Richard R. Orlandi; Michael J. Parker
Chronic rhinosinusitis (CRS) is characterized by mucosal inflammation affecting both the nasal cavity and paranasal sinuses; its causes are potentially numerous, disparate, and frequently overlapping. The more common conditions that are associated with CRS are perennial allergic and nonallergic rhinitis, nasal polyps, and anatomical mechanical obstruction (septum/turbinate issues). Other less common etiologies include inflammation (eg, from superantigens), fungal sinusitis or bacterial sinusitis with or without associated biofilm formation, gastroesophageal reflux, smoke and other environmental exposures, immune deficiencies, genetics, and aspirin-exacerbated respiratory disease. A diagnosis of CRS is strongly suggested by a history of symptoms (eg, congestion and/or fullness; nasal obstruction, blockage, discharge, and/or purulence; discolored postnasal discharge; hyposmia/anosmia; facial pain and/or pressure) and their duration for > 3 months. A definitive diagnosis requires physical evidence of mucosal swelling or discharge appreciated during physical examination coupled with CT imaging if inflammation does not involve the middle meatus or ethmoid bulla. Multivariant causation makes the diagnosis of CRS and selection of treatment complex. Furthermore, various types of health care providers including ear, nose, and throat (ENT) specialists, allergists, primary care physicians, and pulmonologists treat CRS, and each is likely to have a different approach. A structured approach to the diagnosis and management of CRS can help streamline and standardize care no matter where patients present for evaluation and treatment. A 2008 Working Group on CRS in Adults, supported by the American Academy of Otolaryngic Allergy (AAOA), developed a series of algorithms for the differential diagnosis and treatment of CRS in adults, based on the evolving understanding of CRS as an inflammatory disease. The algorithms presented in this paper address an approach for all CRS patients as well as approaches for those with nasal polyps, edema observed on nasal endoscopy, purulence observed on nasal endoscopy, an abnormal history and physical examination, and an abnormal history and normal physical examination.
Journal of Medical Genetics | 2014
Morad Ansari; G Poke; Quentin Rv Ferry; Kathleen A. Williamson; R. B. Aldridge; Alison Meynert; Hemant Bengani; C Y Chan; Hülya Kayserili; Ş Avci; Hennekam Rcm.; Anne K. Lampe; Egbert J. W. Redeker; Tessa Homfray; Allyson Ross; M F Smeland; Sahar Mansour; Michael J. Parker; Jackie Cook; Miranda Splitt; Robert B. Fisher; Alan Fryer; Alex Magee; Andrew O.M. Wilkie; A. Barnicoat; Angela F. Brady; Nicola S. Cooper; Catherine Mercer; Charu Deshpande; Christopher Bennett
Background Cornelia de Lange syndrome (CdLS) is a multisystem disorder with distinctive facial appearance, intellectual disability and growth failure as prominent features. Most individuals with typical CdLS have de novo heterozygous loss-of-function mutations in NIPBL with mosaic individuals representing a significant proportion. Mutations in other cohesin components, SMC1A, SMC3, HDAC8 and RAD21 cause less typical CdLS. Methods We screened 163 affected individuals for coding region mutations in the known genes, 90 for genomic rearrangements, 19 for deep intronic variants in NIPBL and 5 had whole-exome sequencing. Results Pathogenic mutations [including mosaic changes] were identified in: NIPBL 46 [3] (28.2%); SMC1A 5 [1] (3.1%); SMC3 5 [1] (3.1%); HDAC8 6 [0] (3.6%) and RAD21 1 [0] (0.6%). One individual had a de novo 1.3 Mb deletion of 1p36.3. Another had a 520 kb duplication of 12q13.13 encompassing ESPL1, encoding separase, an enzyme that cleaves the cohesin ring. Three de novo mutations were identified in ANKRD11 demonstrating a phenotypic overlap with KBG syndrome. To estimate the number of undetected mosaic cases we used recursive partitioning to identify discriminating features in the NIPBL-positive subgroup. Filtering of the mutation-negative group on these features classified at least 18% as ‘NIPBL-like’. A computer composition of the average face of this NIPBL-like subgroup was also more typical in appearance than that of all others in the mutation-negative group supporting the existence of undetected mosaic cases. Conclusions Future diagnostic testing in ‘mutation-negative’ CdLS thus merits deeper sequencing of multiple DNA samples derived from different tissues.
American Journal of Human Genetics | 2015
Lot Snijders Blok; Erik Madsen; Jane Juusola; Christian Gilissen; Diana Baralle; Margot R.F. Reijnders; Hanka Venselaar; Céline Helsmoortel; Megan T. Cho; Alexander Hoischen; Lisenka E.L.M. Vissers; Tom S. Koemans; Willemijn Wissink-Lindhout; Evan E. Eichler; Corrado Romano; Hilde Van Esch; Connie Stumpel; Maaike Vreeburg; Eric Smeets; Karin Oberndorff; Bregje W.M. van Bon; Marie Shaw; Jozef Gecz; Eric Haan; Melanie Bienek; Corinna Jensen; Bart Loeys; Anke Van Dijck; A. Micheil Innes; Hilary Racher
Intellectual disability (ID) affects approximately 1%-3% of humans with a gender bias toward males. Previous studies have identified mutations in more than 100 genes on the X chromosome in males with ID, but there is less evidence for de novo mutations on the X chromosome causing ID in females. In this study we present 35 unique deleterious de novo mutations in DDX3X identified by whole exome sequencing in 38 females with ID and various other features including hypotonia, movement disorders, behavior problems, corpus callosum hypoplasia, and epilepsy. Based on our findings, mutations in DDX3X are one of the more common causes of ID, accounting for 1%-3% of unexplained ID in females. Although no de novo DDX3X mutations were identified in males, we present three families with segregating missense mutations in DDX3X, suggestive of an X-linked recessive inheritance pattern. In these families, all males with the DDX3X variant had ID, whereas carrier females were unaffected. To explore the pathogenic mechanisms accounting for the differences in disease transmission and phenotype between affected females and affected males with DDX3X missense variants, we used canonical Wnt defects in zebrafish as a surrogate measure of DDX3X function in vivo. We demonstrate a consistent loss-of-function effect of all tested de novo mutations on the Wnt pathway, and we further show a differential effect by gender. The differential activity possibly reflects a dose-dependent effect of DDX3X expression in the context of functional mosaic females versus one-copy males, which reflects the complex biological nature of DDX3X mutations.
American Journal of Human Genetics | 2014
Detelina Grozeva; Keren J. Carss; Olivera Spasic-Boskovic; Michael J. Parker; Hayley Archer; Helen V. Firth; Soo-Mi Park; Natalie Canham; Susan Holder; Meredith Wilson; Anna Hackett; Michael Field; James A B Floyd; F. Lucy Raymond
To identify further Mendelian causes of intellectual disability (ID), we screened a cohort of 996 individuals with ID for variants in 565 known or candidate genes by using a targeted next-generation sequencing approach. Seven loss-of-function (LoF) mutations-four nonsense (c.1195A>T [p.Lys399(∗)], c.1333C>T [p.Arg445(∗)], c.1866C>G [p.Tyr622(∗)], and c.3001C>T [p.Arg1001(∗)]) and three frameshift (c.2177_2178del [p.Thr726Asnfs(∗)39], c.3771dup [p.Ser1258Glufs(∗)65], and c.3856del [p.Ser1286Leufs(∗)84])-were identified in SETD5, a gene predicted to encode a methyltransferase. All mutations were compatible with de novo dominant inheritance. The affected individuals had moderate to severe ID with additional variable features of brachycephaly; a prominent high forehead with synophrys or striking full and broad eyebrows; a long, thin, and tubular nose; long, narrow upslanting palpebral fissures; and large, fleshy low-set ears. Skeletal anomalies, including significant leg-length discrepancy, were a frequent finding in two individuals. Congenital heart defects, inguinal hernia, or hypospadias were also reported. Behavioral problems, including obsessive-compulsive disorder, hand flapping with ritualized behavior, and autism, were prominent features. SETD5 lies within the critical interval for 3p25 microdeletion syndrome. The individuals with SETD5 mutations showed phenotypic similarity to those previously reported with a deletion in 3p25, and thus loss of SETD5 might be sufficient to account for many of the clinical features observed in this condition. Our findings add to the growing evidence that mutations in genes encoding methyltransferases regulating histone modification are important causes of ID. This analysis provides sufficient evidence that rare de novo LoF mutations in SETD5 are a relatively frequent (0.7%) cause of ID.
Journal of Medical Genetics | 2011
M. Balasubramanian; K. Smith; Lina Basel-Vanagaite; M. F. Feingold; Pamela Brock; Gordon C. Gowans; Pradeep Vasudevan; L. Cresswell; E. J. Taylor; C. J. Harris; N. Friedman; Rocio Moran; Holly Feret; Elaine H. Zackai; Aaron Theisen; Jill A. Rosenfeld; Michael J. Parker
Recurrent deletions of 2q32q33 have recently been reported as a new microdeletion syndrome, clinical features of which include significant learning difficulties, growth retardation, dysmorphic features, thin and sparse hair, feeding difficulties, and cleft or high palate. Haploinsufficiency of one gene within the deleted region, SATB2, has been suggested to be responsible for most of the features of the syndrome. This article describes seven previously unreported patients with deletions at 2q33.1, all partially overlapping the previously described critical region for the 2q33.1 microdeletion syndrome. The deletions ranged in size from 35 kb to 10.4 Mb, with the smallest deletion entirely within the SATB2 gene. Patients demonstrated significant developmental delay and challenging behaviour, a particular behavioural phenotype that seems to be emerging with more reported patients with this condition. One patient in this cohort has a deletion entirely within SATB2 and has a cleft palate, whereas several patients with larger deletions have a high arched palate. In addition, one other patient has significant orthopaedic problems with ligamentous laxity. Interestingly, this patient has a deletion that lies just distal to SATB2. The orthopaedic problems have not been reported previously and are possibly an additional feature of this syndrome. Overall, this report provides further evidence that the SATB2 gene is the critical gene in this microdeletion syndrome. In addition, because the individuals in this study range in age from 3–19 years, these patients will help define the natural progression of the phenotype in patients with this microdeletion.
Clinical Dysmorphology | 2008
Emma C. Kivuva; Michael J. Parker; Marta C. Cohen; Bart Wagner; Glenda J. Sobey
De Barsy syndrome is a rare, autosomal recessive syndrome characterised by a progeria-like appearance with distinctive facial features and cutis laxa. Ophthalmological, orthopaedic and neurological abnormalities are also typically present. The syndrome was first described by de Barsy et al. in 1967 and since that time approximately 27 further cases have been reported worldwide. We present a case that demonstrates the typical clinical and histological features of de Barsy syndrome. A female infant, the second child of first-cousin parents from a multiply consanguineous family of Pakistani origin, presented at birth with growth retardation, cutis laxa and a progeria-like appearance. She had thin, overlapping fingers and adducted thumbs, blue sclerae, cloudy corneas and myopia. She has failed to thrive and has marked developmental delay and abnormal athetoid movements. During the first year of life she developed pectus excavatum and her facial appearance became more aged. To our knowledge there are no previous reports of de Barsy syndrome in individuals of Pakistani origin.