Michael J. Raupach
Ruhr University Bochum
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael J. Raupach.
Nature | 2007
A. Brandt; Andrew J. Gooday; Simone N. Brandão; Saskia Brix; Wiebke Brökeland; Tomas Cedhagen; Madhumita Choudhury; Nils Cornelius; Bruno Danis; Ilse De Mesel; Robert J. Diaz; David Gillan; Brigitte Ebbe; John A. Howe; Dorte Janussen; Stefanie Kaiser; Katrin Linse; Marina V. Malyutina; Jan Pawlowski; Michael J. Raupach; Ann Vanreusel
Shallow marine benthic communities around Antarctica show high levels of endemism, gigantism, slow growth, longevity and late maturity, as well as adaptive radiations that have generated considerable biodiversity in some taxa. The deeper parts of the Southern Ocean exhibit some unique environmental features, including a very deep continental shelf and a weakly stratified water column, and are the source for much of the deep water in the world ocean. These features suggest that deep-sea faunas around the Antarctic may be related both to adjacent shelf communities and to those in other oceans. Unlike shallow-water Antarctic benthic communities, however, little is known about life in this vast deep-sea region. Here, we report new data from recent sampling expeditions in the deep Weddell Sea and adjacent areas (748–6,348 m water depth) that reveal high levels of new biodiversity; for example, 674 isopods species, of which 585 were new to science. Bathymetric and biogeographic trends varied between taxa. In groups such as the isopods and polychaetes, slope assemblages included species that have invaded from the shelf. In other taxa, the shelf and slope assemblages were more distinct. Abyssal faunas tended to have stronger links to other oceans, particularly the Atlantic, but mainly in taxa with good dispersal capabilities, such as the Foraminifera. The isopods, ostracods and nematodes, which are poor dispersers, include many species currently known only from the Southern Ocean. Our findings challenge suggestions that deep-sea diversity is depressed in the Southern Ocean and provide a basis for exploring the evolutionary significance of the varied biogeographic patterns observed in this remote environment.
Antarctic Science | 2006
Michael J. Raupach; Johann-Wolfgang Wägele
Acanthaspid isopods are well known from the deep sea regions of all oceans. Many species have been found also on the continental shelf around Antarctica. Phylogenetic relationships within the Acanthaspidiidae and the genetic differentiation of populations are poorly understood. In this study we analysed 16S rRNA gene sequences of 36 specimens of Acanthaspidiidae, including 17 specimens of Acanthaspidia drygalskii Vanhöffen, 1914. This species is known from several locations along the Antarctic shelf, supporting the idea of a circum-Antarctic distribution of this taxon. Our molecular data support the monophyly of all six species analysed, but there is only limited evidence for the interspecific relationships between the species. However, we were able to identify three distinct groups of haplotypes within Acanthaspidia drygaskii. Our results indicate the evidence of cryptic, reproductively isolated species. Further data are needed to understand mechanisms underlying speciation in deep sea isopods.
Frontiers in Zoology | 2010
Michael J. Raupach; Jonas J. Astrin; Karsten Hannig; Marcell K. Peters; Mark Y. Stoeckle; Johann-Wolfgang Wägele
BackgroundThe identification of vast numbers of unknown organisms using DNA sequences becomes more and more important in ecological and biodiversity studies. In this context, a fragment of the mitochondrial cytochrome c oxidase I (COI) gene has been proposed as standard DNA barcoding marker for the identification of organisms. Limitations of the COI barcoding approach can arise from its single-locus identification system, the effect of introgression events, incomplete lineage sorting, numts, heteroplasmy and maternal inheritance of intracellular endosymbionts. Consequently, the analysis of a supplementary nuclear marker system could be advantageous.ResultsWe tested the effectiveness of the COI barcoding region and of three nuclear ribosomal expansion segments in discriminating ground beetles of Central Europe, a diverse and well-studied invertebrate taxon. As nuclear markers we determined the 18S rDNA: V4, 18S rDNA: V7 and 28S rDNA: D3 expansion segments for 344 specimens of 75 species. Seventy-three species (97%) of the analysed species could be accurately identified using COI, while the combined approach of all three nuclear markers provided resolution among 71 (95%) of the studied Carabidae.ConclusionOur results confirm that the analysed nuclear ribosomal expansion segments in combination constitute a valuable and efficient supplement for classical DNA barcoding to avoid potential pitfalls when only mitochondrial data are being used. We also demonstrate the high potential of COI barcodes for the identification of even closely related carabid species.
PLOS ONE | 2014
Michael J. Raupach; Lars Hendrich; Stefan Küchler; Fabian Deister; Jérôme Morinière; Martin M. Gossner
During the last few years, DNA barcoding has become an efficient method for the identification of species. In the case of insects, most published DNA barcoding studies focus on species of the Ephemeroptera, Trichoptera, Hymenoptera and especially Lepidoptera. In this study we test the efficiency of DNA barcoding for true bugs (Hemiptera: Heteroptera), an ecological and economical highly important as well as morphologically diverse insect taxon. As part of our study we analyzed DNA barcodes for 1742 specimens of 457 species, comprising 39 families of the Heteroptera. We found low nucleotide distances with a minimum pairwise K2P distance <2.2% within 21 species pairs (39 species). For ten of these species pairs (18 species), minimum pairwise distances were zero. In contrast to this, deep intraspecific sequence divergences with maximum pairwise distances >2.2% were detected for 16 traditionally recognized and valid species. With a successful identification rate of 91.5% (418 species) our study emphasizes the use of DNA barcodes for the identification of true bugs and represents an important step in building-up a comprehensive barcode library for true bugs in Germany and Central Europe as well. Our study also highlights the urgent necessity of taxonomic revisions for various taxa of the Heteroptera, with a special focus on various species of the Miridae. In this context we found evidence for on-going hybridization events within various taxonomically challenging genera (e.g. Nabis Latreille, 1802 (Nabidae), Lygus Hahn, 1833 (Miridae), Phytocoris Fallén, 1814 (Miridae)) as well as the putative existence of cryptic species (e.g. Aneurus avenius (Duffour, 1833) (Aradidae) or Orius niger (Wolff, 1811) (Anthocoridae)).
PLOS ONE | 2015
Michael J. Raupach; Andrea Barco; Dirk Steinke; Jan Beermann; Silke Laakmann; Inga Mohrbeck; Hermann Neumann; Terue Cristina Kihara; Karin Pointner; Adriana Radulovici; Alexandra Segelken-Voigt; Christina Wesse; Thomas Knebelsberger
During the last years DNA barcoding has become a popular method of choice for molecular specimen identification. Here we present a comprehensive DNA barcode library of various crustacean taxa found in the North Sea, one of the most extensively studied marine regions of the world. Our data set includes 1,332 barcodes covering 205 species, including taxa of the Amphipoda, Copepoda, Decapoda, Isopoda, Thecostraca, and others. This dataset represents the most extensive DNA barcode library of the Crustacea in terms of species number to date. By using the Barcode of Life Data Systems (BOLD), unique BINs were identified for 198 (96.6%) of the analyzed species. Six species were characterized by two BINs (2.9%), and three BINs were found for the amphipod species Gammarus salinus Spooner, 1947 (0.4%). Intraspecific distances with values higher than 2.2% were revealed for 13 species (6.3%). Exceptionally high distances of up to 14.87% between two distinct but monophyletic clusters were found for the parasitic copepod Caligus elongatus Nordmann, 1832, supporting the results of previous studies that indicated the existence of an overlooked sea louse species. In contrast to these high distances, haplotype-sharing was observed for two decapod spider crab species, Macropodia parva Van Noort & Adema, 1985 and Macropodia rostrata (Linnaeus, 1761), underlining the need for a taxonomic revision of both species. Summarizing the results, our study confirms the application of DNA barcodes as highly effective identification system for the analyzed marine crustaceans of the North Sea and represents an important milestone for modern biodiversity assessment studies using barcode sequences.
PLOS ONE | 2012
Florian Leese; Philipp Brand; Andrey Rozenberg; Christoph Mayer; Shobhit Agrawal; Johannes Dambach; Lars Dietz; Jana Sophie Doemel; William P. Goodall-Copstake; Christoph Held; Jennifer A. Jackson; Kathrin P. Lampert; Katrin Linse; Jan Niklas Macher; Jennifer Nolzen; Michael J. Raupach; Nicole T. Rivera; Christoph D. Schubart; Sebastian Striewski; Ralph Tollrian; Chester J. Sands
High throughput sequencing technologies are revolutionizing genetic research. With this “rise of the machines”, genomic sequences can be obtained even for unknown genomes within a short time and for reasonable costs. This has enabled evolutionary biologists studying genetically unexplored species to identify molecular markers or genomic regions of interest (e.g. micro- and minisatellites, mitochondrial and nuclear genes) by sequencing only a fraction of the genome. However, when using such datasets from non-model species, it is possible that DNA from non-target contaminant species such as bacteria, viruses, fungi, or other eukaryotic organisms may complicate the interpretation of the results. In this study we analysed 14 genomic pyrosequencing libraries of aquatic non-model taxa from four major evolutionary lineages. We quantified the amount of suitable micro- and minisatellites, mitochondrial genomes, known nuclear genes and transposable elements and searched for contamination from various sources using bioinformatic approaches. Our results show that in all sequence libraries with estimated coverage of about 0.02–25%, many appropriate micro- and minisatellites, mitochondrial gene sequences and nuclear genes from different KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways could be identified and characterized. These can serve as markers for phylogenetic and population genetic analyses. A central finding of our study is that several genomic libraries suffered from different biases owing to non-target DNA or mobile elements. In particular, viruses, bacteria or eukaryote endosymbionts contributed significantly (up to 10%) to some of the libraries analysed. If not identified as such, genetic markers developed from high-throughput sequencing data for non-model organisms may bias evolutionary studies or fail completely in experimental tests. In conclusion, our study demonstrates the enormous potential of low-coverage genome survey sequences and suggests bioinformatic analysis workflows. The results also advise a more sophisticated filtering for problematic sequences and non-target genome sequences prior to developing markers.
Molecular Ecology Resources | 2016
Andrea Barco; Michael J. Raupach; Silke Laakmann; Hermann Neumann; Thomas Knebelsberger
Sequence‐based specimen identification, known as DNA barcoding, is a common method complementing traditional morphology‐based taxonomic assignments. The fundamental resource in DNA barcoding is the availability of a taxonomically reliable sequence database to use as a reference for sequence comparisons. Here, we provide a reference library including 579 sequences of the mitochondrial cytochrome c oxidase subunit I for 113 North Sea mollusc species. We tested the efficacy of this library by simulating a sequence‐based specimen identification scenario using Best Match, Best Close Match (BCM) and All Species Barcode (ASB) criteria with three different threshold values. Each identification result was compared with our prior morphology‐based taxonomic assignments. Our simulation resulted in 87.7% congruent identifications (93.8% when excluding singletons). The highest number of congruent identifications was obtained with BCM and ASB and a 0.05 threshold. We also compared identifications with genetic clustering (Barcode Index Numbers, BINs) computed by the Barcode of Life Datasystem (BOLD). About 68% of our morphological identifications were congruent with BINs created by BOLD. Forty‐nine sequences were clustered in 16 discordant BINs, and these were divided in two classes: sequences from different species clustered in a single BIN and conspecific sequences divided in more BINs. Whereas former incongruences were probably caused by BOLD entries in need of a taxonomic update, the latter incongruences regarded taxa requiring further investigations. These include species with amphi‐Atlantic distribution, whose genetic structure should be evaluated over their entire range to produce a reliable sequence‐based identification system.
PLOS ONE | 2015
Inga Mohrbeck; Michael J. Raupach; Pedro Martínez Arbizu; Thomas Knebelsberger; Silke Laakmann
The applications of traditional morphological and molecular methods for species identification are greatly restricted by processing speed and on a regional or greater scale are generally considered unfeasible. In this context, high-throughput sequencing, or metagenetics, has been proposed as an efficient tool to document biodiversity. Here we evaluated the effectiveness of 454 pyrosequencing in marine metazoan community analysis using the 18S rDNA: V1-V2 region. Multiplex pyrosequencing of the V1-V2 region was used to analyze two pooled samples of DNA, one comprising 118 and the other 37 morphologically identified species, and one natural sample taken directly from a North Sea zooplankton community. A DNA reference library comprising all species represented in the pooled samples was created by Sanger sequencing, and this was then used to determine the optimal similarity threshold for species delineation. The optimal threshold was found at 99% species similarity, with 85% identification success. Pyrosequencing was able to identify between fewer species: 67% and 78% of the species in the two pooled samples. Also, a large number of sequences for three species that were not included in the pooled samples were amplified by pyrosequencing, suggesting preferential amplification of some genotypes and the sensitivity of this approach to even low levels of contamination. Conversely, metagenetic analysis of the natural zooplankton sample identified many more species (particularly gelatinous zooplankton and meroplankton) than morphological analysis of a formalin-fixed sample from the same sampling site, suggesting an increased level of taxonomic resolution with pyrosequencing. The study demonstrated that, based on the V1-V2 region, 454 sequencing does not provide accurate species differentiation and reliable taxonomic classification, as it is required in most biodiversity monitoring. The analysis of artificially prepared samples indicated that species detection in pyrosequencing datasets is complicated by potential PCR-based biases and that the V1-V2 marker is poorly resolved for some taxa.
ZooKeys | 2015
Michael J. Raupach; Adriana Radulovici
Abstract Species identification represents a pivotal component for large-scale biodiversity studies and conservation planning but represents a challenge for many taxa when using morphological traits only. Consequently, alternative identification methods based on molecular markers have been proposed. In this context, DNA barcoding has become a popular and accepted method for the identification of unknown animals across all life stages by comparison to a reference library. In this review we examine the progress of barcoding studies for the Crustacea using the Web of Science data base from 2003 to 2014. All references were classified in terms of taxonomy covered, subject area (identification/library, genetic variability, species descriptions, phylogenetics, methods, pseudogenes/numts), habitat, geographical area, authors, journals, citations, and the use of the Barcode of Life Data Systems (BOLD). Our analysis revealed a total number of 164 barcoding studies for crustaceans with a preference for malacostracan crustaceans, in particular Decapoda, and for building reference libraries in order to identify organisms. So far, BOLD did not establish itself as a popular informatics platform among carcinologists although it offers many advantages for standardized data storage, analyses and publication.
Organisms Diversity & Evolution | 2013
Hossein Rajaei Sh.; Dennis Rödder; Alexander M. Weigand; Johannes Dambach; Michael J. Raupach; J. Wolfgang Wägele
Alternating glacial and interglacial periods led to range shifts (contractions and expansions), persistence in distinct glacial refugia and extinction events in various temperate organisms. Today, the integrative analysis of molecular markers and spatial distribution models conducted for multiple taxa allows the detection of phylogeographical patterns, thus reconstructing major biogeographical events in their shared evolutionary history. In this study, the effects of past climate change on the evolutionary history of two sympatric moth species (Gnopharmia colchidaria s.l. and G. kasrunensis) and their host plants (Prunus scoparia and P. fenzliana) were inferred for the largely neglected biodiversity hot spot Iran. We complementarily analyzed the population structure of both moth species (187 specimens, based on COI) in congruence with batched species distribution models (SDMs) for all four taxa and for the times of the Last Glacial Maximum (21 ky BP), 6 ky BP and today. Coincidence of SDMs and the distribution of haplotype lineages indicated a shared refugium for the southwestern Zagros Mountains and potential species-specific refugial areas in the southern Caucasus and the Kope-Dagh Mountains. Both moth species experienced past population expansion.