Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael J. Sadowsky is active.

Publication


Featured researches published by Michael J. Sadowsky.


Journal of Bacteriology | 2001

Melamine Deaminase and Atrazine Chlorohydrolase: 98 Percent Identical but Functionally Different

Jennifer L. Seffernick; Mervyn L. de Souza; Michael J. Sadowsky; Lawrence P. Wackett

The gene encoding melamine deaminase (TriA) from Pseudomonas sp. strain NRRL B-12227 was identified, cloned into Escherichia coli, sequenced, and expressed for in vitro study of enzyme activity. Melamine deaminase displaced two of the three amino groups from melamine, producing ammeline and ammelide as sequential products. The first deamination reaction occurred more than 10 times faster than the second. Ammelide did not inhibit the first or second deamination reaction, suggesting that the lower rate of ammeline hydrolysis was due to differential substrate turnover rather than product inhibition. Remarkably, melamine deaminase is 98% identical to the enzyme atrazine chlorohydrolase (AtzA) from Pseudomonas sp. strain ADP. Each enzyme consists of 475 amino acids and differs by only 9 amino acids. AtzA was shown to exclusively catalyze dehalogenation of halo-substituted triazine ring compounds and had no activity with melamine and ammeline. Similarly, melamine deaminase had no detectable activity with the halo-triazine substrates. Melamine deaminase was active in deamination of a substrate that was structurally identical to atrazine, except for the substitution of an amino group for the chlorine atom. Moreover, melamine deaminase and AtzA are found in bacteria that grow on melamine and atrazine compounds, respectively. These data strongly suggest that the 9 amino acid differences between melamine deaminase and AtzA represent a short evolutionary pathway connecting enzymes catalyzing physiologically relevant deamination and dehalogenation reactions, respectively.


Journal of Clinical Gastroenterology | 2009

Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent Clostridium difficile-associated diarrhea.

Alexander Khoruts; Johan Dicksved; Janet K. Jansson; Michael J. Sadowsky

Clostridium difficile-associated disease (CDAD) is the major known cause of antibiotic-induced diarrhea and colitis, and the disease is thought to result from persistent disruption of commensal gut microbiota. Bacteriotherapy by way of fecal transplantation can be used to treat recurrent CDAD, which is thought to reestablish the normal colonic microflora. However, limitations of conventional microbiologic techniques have, until recently, precluded testing of this idea. In this study, we used terminal-restriction fragment length polymorphism and 16S rRNA gene sequencing approaches to characterize the bacterial composition of the colonic microflora in a patient suffering from recurrent CDAD before and after treatment by fecal transplantation from a healthy donor. Although the patients residual colonic microbiota, prior to therapy was deficient in members of the bacterial divisions-Firmicutes and Bacteriodetes, transplantation had a dramatic impact on the composition of the patients gut microbiota. By 14 days posttransplantation, the fecal bacterial composition of the recipient was highly similar to that of the donor and was dominated by Bacteroides spp. strains and an uncharacterized butyrate producing bacterium. The change in bacterial composition was accompanied by resolution of the patients symptoms. The striking similarity of the recipients and donors intestinal microbiota following after bacteriotherapy suggests that the donors bacteria quickly occupied their requisite niches resulting in restoration of both the structure and function of the microbial communities present.


Applied and Environmental Microbiology | 2000

Use of repetitive DNA sequences and the PCR to differentiate Escherichia coli isolates from human and animal sources

Priscilla E. Dombek; LeeAnn K. Johnson; Sara T. Zimmerley; Michael J. Sadowsky

ABSTRACT The rep-PCR DNA fingerprint technique, which uses repetitive intergenic DNA sequences, was investigated as a way to differentiate between human and animal sources of fecal pollution. BOX and REP primers were used to generate DNA fingerprints from Escherichia coli strains isolated from human and animal sources (geese, ducks, cows, pigs, chickens, and sheep). Our initial studies revealed that the DNA fingerprints obtained with the BOX primer were more effective for grouping E. coli strains than the DNA fingerprints obtained with REP primers. The BOX primer DNA fingerprints of 154 E. coli isolates were analyzed by using the Jaccard band-matching algorithm. Jackknife analysis of the resulting similarity coefficients revealed that 100% of the chicken and cow isolates and between 78 and 90% of the human, goose, duck, pig, and sheep isolates were assigned to the correct source groups. A dendrogram constructed by using Jaccard similarity coefficients almost completely separated the human isolates from the nonhuman isolates. Multivariate analysis of variance, a form of discriminant analysis, successfully differentiated the isolates and placed them in the appropriate source groups. Taken together, our results indicate that rep-PCR performed with the BOX A1R primer may be a useful and effective tool for rapidly determining sources of fecal pollution.


Science | 2007

Legumes symbioses : Absence of Nod genes in photosynthetic bradyrhizobia

Eric Giraud; Lionel Moulin; David Vallenet; Valérie Barbe; Eddie Cytryn; Jean Christophe Avarre; Marianne Jaubert; Damien Simon; Fabienne Cartieaux; Yves Prin; Gilles Béna; Laura Hannibal; Joël Fardoux; Mila Kojadinovic; Laurie Vuillet; Aurélie Lajus; Stéphane Cruveiller; Zoé Rouy; Sophie Mangenot; Béatrice Segurens; Carole Dossat; William L. Franck; Woo Suk Chang; Elizabeth Saunders; David Bruce; Paul G. Richardson; Philippe Normand; Bernard Dreyfus; Gary Stacey; David W. Emerich

Leguminous plants (such as peas and soybeans) and rhizobial soil bacteria are symbiotic partners that communicate through molecular signaling pathways, resulting in the formation of nodules on legume roots and occasionally stems that house nitrogen-fixing bacteria. Nodule formation has been assumed to be exclusively initiated by the binding of bacterial, host-specific lipochito-oligosaccharidic Nod factors, encoded by the nodABC genes, to kinase-like receptors of the plant. Here we show by complete genome sequencing of two symbiotic, photosynthetic, Bradyrhizobium strains, BTAi1 and ORS278, that canonical nodABC genes and typical lipochito-oligosaccharidic Nod factors are not required for symbiosis in some legumes. Mutational analyses indicated that these unique rhizobia use an alternative pathway to initiate symbioses, where a purine derivative may play a key role in triggering nodule formation.


The American Journal of Gastroenterology | 2012

Standardized frozen preparation for transplantation of fecal microbiota for recurrent Clostridium difficile infection.

Matthew J. Hamilton; Alexa R. Weingarden; Michael J. Sadowsky; Alexander Khoruts

OBJECTIVES:While fecal microbiota transplantation (FMT) is historically known to be an effective means to treat recurrent Clostridium difficile infection (CDI) refractory to standard antibiotic therapies, the procedure is rarely performed. At least some of the reasons for limited availability are those of practicality, including aesthetic concerns and costs of donor screening. The objective of this study was to overcome these barriers in our clinical FMT program.METHODS:We report clinical experience with 43 consecutive patients who were treated with FMT for recurrent CDI since inception of this program at the University of Minnesota. During this time, we simplified donor identification and screening by moving from patient-identified individual donors to standard volunteer donors. Material preparation shifted from the endoscopy suite to a standardized process in the laboratory, and ultimately to banking frozen processed fecal material that is ready to use when needed.RESULTS:Standardization of material preparation significantly simplified the practical aspects of FMT without loss of apparent efficacy in clearing recurrent CDI. Approximately 30% of the patients had underlying inflammatory bowel disease, and FMT was equally effective in this group.CONCLUSIONS:Several key steps in the standardization of donor material preparation significantly simplified the clinical practice of FMT for recurrent CDI in patients failing antibiotic therapy.


Applied and Environmental Microbiology | 2006

Presence and growth of naturalized Escherichia coli in temperate soils from Lake Superior watersheds

Satoshi Ishii; Winfried B. Ksoll; Randall E. Hicks; Michael J. Sadowsky

ABSTRACT The presence of Escherichia coli in water is used as an indicator of fecal contamination, but recent reports indicate that soil populations can also be detected in tropical, subtropical, and some temperate environments. In this study, we report that viable E. coli populations were repeatedly isolated from northern temperate soils in three Lake Superior watersheds from October 2003 to October 2004. Seasonal variation in the population density of soilborne E. coli was observed; the greatest cell densities, up to 3 × 103 CFU/g soil, were found in the summer to fall (June to October), and the lowest numbers, ≤1 CFU/g soil, occurred during the winter to spring months (February to May). Horizontal, fluorophore-enhanced repetitive extragenic palindromic PCR (HFERP) DNA fingerprint analyses indicated that identical soilborne E. coli genotypes, those with ≥92% similarity values, overwintered in frozen soil and were present over time. Soilborne E. coli strains had HFERP DNA fingerprints that were unique to specific soils and locations, suggesting that these E. coli strains became naturalized, autochthonous members of the soil microbial community. In laboratory studies, naturalized E. coli strains had the ability to grow and replicate to high cell densities, up to 4.2 × 105 CFU/g soil, in nonsterile soils when incubated at 30 or 37°C and survived longer than 1 month when soil temperatures were ≤25°C. To our knowledge, this is the first report of the growth of naturalized E. coli in nonsterile, nonamended soils. The presence of significant populations of naturalized populations of E. coli in temperate soils may confound the use of this bacterium as an indicator of fecal contamination.


Journal of Bacteriology | 2001

Complete nucleotide sequence and organization of the atrazine catabolic plasmid pADP-1 from Pseudomonas sp. strain ADP

Betsy Martinez; Jeffrey Tomkins; Lawrence P. Wackett; Rod A. Wing; Michael J. Sadowsky

The complete 108,845-nucleotide sequence of catabolic plasmid pADP-1 from Pseudomonas sp. strain ADP was determined. Plasmid pADP-1 was previously shown to encode AtzA, AtzB, and AtzC, which catalyze the sequential hydrolytic removal of s-triazine ring substituents from the herbicide atrazine to yield cyanuric acid. Computational analyses indicated that pADP-1 encodes 104 putative open reading frames (ORFs), which are predicted to function in catabolism, transposition, and plasmid maintenance, transfer, and replication. Regions encoding transfer and replication functions of pADP-1 had 80 to 100% amino acid sequence identity to pR751, an IncPbeta plasmid previously isolated from Enterobacter aerogenes. pADP-1 was shown to contain a functional mercury resistance operon with 99% identity to Tn5053. Complete copies of transposases with 99% amino acid sequence identity to TnpA from IS1071 and TnpA from Pseudomonas pseudoalcaligenes were identified and flank each of the atzA, atzB, and atzC genes, forming structures resembling nested catabolic transposons. Functional analyses identified three new catabolic genes, atzD, atzE, and atzF, which participate in atrazine catabolism. Crude extracts from Escherichia coli expressing AtzD hydrolyzed cyanuric acid to biuret. AtzD showed 58% amino acid sequence identity to TrzD, a cyanuric acid amidohydrolase, from Pseudomonas sp. strain NRRLB-12227. Two other genes encoding the further catabolism of cyanuric acid, atzE and atzF, reside in a contiguous cluster adjacent to a potential LysR-type transcriptional regulator. E. coli strains bearing atzE and atzF were shown to encode a biuret hydrolase and allophanate hydrolase, respectively. atzDEF are cotranscribed. AtzE and AtzF are members of a common amidase protein family. These data reveal the complete structure of a catabolic plasmid and show that the atrazine catabolic genes are dispersed on three disparate regions of the plasmid. These results begin to provide insight into how plasmids are structured, and thus evolve, to encode the catabolism of compounds recently added to the biosphere.


International Journal of Systematic and Evolutionary Microbiology | 1991

Proposed Minimal Standards for the Description of New Genera and Species of Root- and Stem-Nodulating Bacteria

Peter H. Graham; Michael J. Sadowsky; Harold H. Keyser; Y. M. Barnet; R. S. Bradley; J. E. Cooper; D. J. De Ley; B. Jarvis; E. B. Roslycky; B. W. Strijdom; J. P. W. Young

Since the first volume of Bergeys Manual of Systematic Bacteriology was published, in 1984, two additional genera and several new species of stem- and root-nodulating bacteria have been proposed; further changes to the taxonomy of this group of organisms appear likely. This paper briefly reviews the current status of “Rhizobium” taxonomy and proposes minimal standards for the description of future genera and species belonging to this group of organisms.


Applied and Environmental Microbiology | 2004

Sample Size, Library Composition, and Genotypic Diversity among Natural Populations of Escherichia coli from Different Animals Influence Accuracy of Determining Sources of Fecal Pollution

Lee Ann K. Johnson; Mary B. Brown; Ethan A. Carruthers; John Ferguson; Priscilla E. Dombek; Michael J. Sadowsky

ABSTRACT A horizontal, fluorophore-enhanced, repetitive extragenic palindromic-PCR (rep-PCR) DNA fingerprinting technique (HFERP) was developed and evaluated as a means to differentiate human from animal sources of Escherichia coli. Box A1R primers and PCR were used to generate 2,466 rep-PCR and 1,531 HFERP DNA fingerprints from E. coli strains isolated from fecal material from known human and 12 animal sources: dogs, cats, horses, deer, geese, ducks, chickens, turkeys, cows, pigs, goats, and sheep. HFERP DNA fingerprinting reduced within-gel grouping of DNA fingerprints and improved alignment of DNA fingerprints between gels, relative to that achieved using rep-PCR DNA fingerprinting. Jackknife analysis of the complete rep-PCR DNA fingerprint library, done using Pearsons product-moment correlation coefficient, indicated that animal and human isolates were assigned to the correct source groups with an 82.2% average rate of correct classification. However, when only unique isolates were examined, isolates from a single animal having a unique DNA fingerprint, Jackknife analysis showed that isolates were assigned to the correct source groups with a 60.5% average rate of correct classification. The percentages of correctly classified isolates were about 15 and 17% greater for rep-PCR and HFERP, respectively, when analyses were done using the curve-based Pearsons product-moment correlation coefficient, rather than the band-based Jaccard algorithm. Rarefaction analysis indicated that, despite the relatively large size of the known-source database, genetic diversity in E. coli was very great and is most likely accounting for our inability to correctly classify many environmental E. coli isolates. Our data indicate that removal of duplicate genotypes within DNA fingerprint libraries, increased database size, proper methods of statistical analysis, and correct alignment of band data within and between gels improve the accuracy of microbial source tracking methods.


Gut microbes | 2013

High-throughput DNA sequence analysis reveals stable engraftment of gut microbiota following transplantation of previously frozen fecal bacteria.

Matthew J. Hamilton; Alexa R. Weingarden; Tatsuya Unno; Alexander Khoruts; Michael J. Sadowsky

Fecal microbiota transplantation (FMT) is becoming a more widely used technology for treatment of recurrent Clostridum difficile infection (CDI). While previous treatments used fresh fecal slurries as a source of microbiota for FMT, we recently reported the successful use of standardized, partially purified and frozen fecal microbiota to treat CDI. Here we report that high-throughput 16S rRNA gene sequencing showed stable engraftment of gut microbiota following FMT using frozen fecal bacteria from a healthy donor. Similar bacterial taxa were found in post-transplantation samples obtained from the recipients and donor samples, but the relative abundance varied considerably between patients and time points. Post FMT samples from patients showed an increase in the abundance of Firmicutes and Bacteroidetes, representing 75–80% of the total sequence reads. Proteobacteria and Actinobacteria were less abundant (< 5%) than that found in patients prior to FMT. Post FMT samples from two patients were very similar to donor samples, with the Bacteroidetes phylum represented by a great abundance of members of the families Bacteroidaceae, Rikenellaceae and Porphyromonadaceae, and were largely comprised of Bacteroides, Alistipes and Parabacteroides genera. Members of the phylum Firmicutes were represented by Ruminococcaceae, Lachnospiraceae, Verrucomicrobiaceae and unclassified Clostridiales and members of the Firmicutes. One patient subsequently received antibiotics for an unrelated infection, resulting in an increase in the number of intestinal Proteobacteria, primarily Enterobacteriaceae. Our results demonstrate that frozen fecal microbiota from a healthy donor can be used to effectively treat recurrent CDI resulting in restoration of the structure of gut microbiota and clearing of Clostridum difficile.

Collaboration


Dive into the Michael J. Sadowsky's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hor Gil Hur

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tatsuya Unno

Jeju National University

View shared research outputs
Top Co-Authors

Avatar

Ping Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Richard L. Whitman

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge