Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael J. Taormina is active.

Publication


Featured researches published by Michael J. Taormina.


Journal of the American Chemical Society | 2015

A Bright Fluorescent Probe for H2S Enables Analyte-Responsive, 3D Imaging in Live Zebrafish Using Light Sheet Fluorescence Microscopy

Matthew D. Hammers; Michael J. Taormina; Matthew M. Cerda; Leticia A. Montoya; Daniel T. Seidenkranz; Raghuveer Parthasarathy; Michael D. Pluth

Hydrogen sulfide (H2S) is a critical gaseous signaling molecule emerging at the center of a rich field of chemical and biological research. As our understanding of the complexity of physiological H2S in signaling pathways evolves, advanced chemical and technological investigative tools are required to make sense of this interconnectivity. Toward this goal, we have developed an azide-functionalized O-methylrhodol fluorophore, MeRho-Az, which exhibits a rapid >1000-fold fluorescence response when treated with H2S, is selective for H2S over other biological analytes, and has a detection limit of 86 nM. Additionally, the MeRho-Az scaffold is less susceptible to photoactivation than other commonly used azide-based systems, increasing its potential application in imaging experiments. To demonstrate the efficacy of this probe for H2S detection, we demonstrate the ability of MeRho-Az to detect differences in H2S levels in C6 cells and those treated with AOAA, a common inhibitor of enzymatic H2S synthesis. Expanding the use of MeRho-Az to complex and heterogeneous biological settings, we used MeRho-Az in combination with light sheet fluorescence microscopy (LSFM) to visualize H2S in the intestinal tract of live zebrafish. This application provides the first demonstration of analyte-responsive 3D imaging with LSFM, highlighting the utility of combining new probes and live imaging methods for investigating chemical signaling in complex multicellular systems.


Mbio | 2014

Spatial and Temporal Features of the Growth of a Bacterial Species Colonizing the Zebrafish Gut

Matthew Jemielita; Michael J. Taormina; Adam R. Burns; Jennifer S. Hampton; Annah S. Rolig; Karen Guillemin; Raghuveer Parthasarathy

ABSTRACT The vertebrate intestine is home to microbial ecosystems that play key roles in host development and health. Little is known about the spatial and temporal dynamics of these microbial communities, limiting our understanding of fundamental properties, such as their mechanisms of growth, propagation, and persistence. To address this, we inoculated initially germ-free zebrafish larvae with fluorescently labeled strains of an Aeromonas species, representing an abundant genus in the zebrafish gut. Using light sheet fluorescence microscopy to obtain three-dimensional images spanning the gut, we quantified the entire bacterial load, as founding populations grew from tens to tens of thousands of cells over several hours. The data yield the first ever measurements of the growth kinetics of a microbial species inside a live vertebrate intestine and show dynamics that robustly fit a logistic growth model. Intriguingly, bacteria were nonuniformly distributed throughout the gut, and bacterial aggregates showed considerably higher growth rates than did discrete individuals. The form of aggregate growth indicates intrinsically higher division rates for clustered bacteria, rather than surface-mediated agglomeration onto clusters. Thus, the spatial organization of gut bacteria both relative to the host and to each other impacts overall growth kinetics, suggesting that spatial characterizations will be an important input to predictive models of host-associated microbial community assembly. IMPORTANCE Our intestines are home to vast numbers of microbes that influence many aspects of health and disease. Though we now know a great deal about the constituents of the gut microbiota, we understand very little about their spatial structure and temporal dynamics in humans or in any animal: how microbial populations establish themselves, grow, fluctuate, and persist. To address this, we made use of a model organism, the zebrafish, and a new optical imaging technique, light sheet fluorescence microscopy, to visualize for the first time the colonization of a live, vertebrate gut by specific bacteria with sufficient resolution to quantify the population over a range from a few individuals to tens of thousands of bacterial cells. Our results provide unprecedented measures of bacterial growth kinetics and also show the influence of spatial structure on bacterial populations, which can be revealed only by direct imaging. Our intestines are home to vast numbers of microbes that influence many aspects of health and disease. Though we now know a great deal about the constituents of the gut microbiota, we understand very little about their spatial structure and temporal dynamics in humans or in any animal: how microbial populations establish themselves, grow, fluctuate, and persist. To address this, we made use of a model organism, the zebrafish, and a new optical imaging technique, light sheet fluorescence microscopy, to visualize for the first time the colonization of a live, vertebrate gut by specific bacteria with sufficient resolution to quantify the population over a range from a few individuals to tens of thousands of bacterial cells. Our results provide unprecedented measures of bacterial growth kinetics and also show the influence of spatial structure on bacterial populations, which can be revealed only by direct imaging.


The Biological Bulletin | 2012

Investigating Bacterial-Animal Symbioses with Light Sheet Microscopy

Michael J. Taormina; Matthew Jemielita; W. Zac Stephens; Adam R. Burns; Joshua V. Troll; Raghuveer Parthasarathy; Karen Guillemin

Microbial colonization of the digestive tract is a crucial event in vertebrate development, required for maturation of host immunity and establishment of normal digestive physiology. Advances in genomic, proteomic, and metabolomic technologies are providing a more detailed picture of the constituents of the intestinal habitat, but these approaches lack the spatial and temporal resolution needed to characterize the assembly and dynamics of microbial communities in this complex environment. We report the use of light sheet microscopy to provide high-resolution imaging of bacterial colonization of the intestine of Danio rerio, the zebrafish. The method allows us to characterize bacterial population dynamics across the entire organ and the behaviors of individual bacterial and host cells throughout the colonization process. The large four-dimensional data sets generated by these imaging approaches require new strategies for image analysis. When integrated with other “omics” data sets, information about the spatial and temporal dynamics of microbial cells within the vertebrate intestine will provide new mechanistic insights into how microbial communities assemble and function within hosts.


Journal of Biophotonics | 2013

Comparing phototoxicity during the development of a zebrafish craniofacial bone using confocal and light sheet fluorescence microscopy techniques

Matthew Jemielita; Michael J. Taormina; April DeLaurier; Charles B. Kimmel; Raghuveer Parthasarathy

The combination of genetically encoded fluorescent proteins and three-dimensional imaging enables cell-type-specific studies of embryogenesis. Light sheet microscopy, in which fluorescence excitation is provided by a plane of laser light, is an appealing approach to live imaging due to its high speed and efficient use of photons. While the advantages of rapid imaging are apparent from recent work, the importance of low light levels to studies of development is not well established. We examine the zebrafish opercle, a craniofacial bone that exhibits pronounced shape changes at early developmental stages, using both spinning disk confocal and light sheet microscopies of fluorescent osteoblast cells. We find normal and aberrant opercle morphologies for specimens imaged with short time intervals using light sheet and spinning disk confocal microscopies, respectively, under equivalent exposure conditions over developmentally-relevant time scales. Quantification of shapes reveals that the differently imaged specimens travel along distinct trajectories in morphological space.


Journal of Microscopy | 2015

A combined light sheet fluorescence and differential interference contrast microscope for live imaging of multicellular specimens.

Ryan P. Baker; Michael J. Taormina; Matthew Jemielita; Raghuveer Parthasarathy

We describe a microscope capable of both light sheet fluorescence microscopy and differential interference contrast microscopy (DICM). The two imaging modes, which to the best of our knowledge have not previously been combined, are complementary: light sheet fluorescence microscopy provides three‐dimensional imaging of fluorescently labelled components of multicellular systems with high speed, large fields of view, and low phototoxicity, whereas differential interference contrast microscopy reveals the unlabelled neighbourhood of tissues, organs, and other structures with high contrast and inherent optical sectioning. Use of a single Nomarski prism for differential interference contrast microscopy and a shared detection path for both imaging modes enables simple integration of the two techniques in one custom microscope. We provide several examples of the utility of the resulting instrument, focusing especially on the digestive tract of the larval zebrafish, revealing in this complex and heterogeneous environment anatomical features, the behaviour of commensal microbes, immune cell motions, and more.


bioRxiv | 2016

Active Microrheology of Intestinal Mucus in the Larval Zebrafish

Michael J. Taormina; Raghuveer Parthasarathy

Mucus is a complex biological fluid that plays a variety of functional roles in many physiological systems. Intestinal mucus in particular serves as a physical barrier to pathogens, a medium for the diffusion of nutrients and metabolites, and an environmental home for colonizing microbes. Its rheological properties have therefore been the subject of many investigations, thus far limited, however, to in vitro studies due to the difficulty of measurement in the natural context of the gut. This limitation especially hinders our understanding of how the gut microbiota interact with the intestinal environment, since examination of this calls not only for in vivo measurement techniques, but for techniques that can be applied to model organisms in which the microbial state of the gut can be controlled. We address this challenge by developing a method that combines magnetic microrheology, light sheet fluorescence microscopy, and microgavage of particles, applying this to the larval zebrafish, a model vertebrate. We present measurements of the viscosity of mucus within the intestinal bulb of both germ-free (devoid of intestinal microbes) and conventionally reared larval zebrafish. At the length scale probed (≈ 10μm), we find that mucus behaves as a Newtonian fluid, with no discernable elastic component. Surprisingly, despite known differences in the the number of secretory cells in germ-free zebrafish and their conventional counterparts, the fluid viscosity for these two groups was very similar. Our measurements provide the first in vivo measurements of intestinal mucus rheology at micron length scales in living animals, quantifying of an important biomaterial environment and highlighting the utility of active magnetic microrheology for biophysical studies.


bioRxiv | 2018

Automated High-Throughput Light-Sheet Fluorescence Microscopy of Larval Zebrafish

Savannah Logan; Christopher Dudley; Ryan P. Baker; Michael J. Taormina; Edouard A. Hay; Raghuveer Parthasarathy

Light sheet fluorescence microscopy enables fast, minimally phototoxic, three-dimensional imaging of live specimens, but is currently limited by low throughput and tedious sample preparation. Here, we describe an automated high-throughput light sheet fluorescence microscope in which specimens are positioned by and imaged within a fluidic system integrated with the sheet excitation and detection optics. We demonstrate the ability of the instrument to rapidly examine live specimens with minimal manual intervention by imaging fluorescent neutrophils over a nearly 0.3 mm3 volume in dozens of larval zebrafish. In addition to revealing considerable inter-individual variability in neutrophil number, known previously from labor-intensive methods, three-dimensional imaging allows assessment of the correlation between the bulk measure of total cellular fluorescence and the spatially resolved measure of actual neutrophil number per animal. We suggest that our simple experimental design should considerably expand the scope and impact of light sheet imaging in the life sciences.


Biophysical Journal | 2017

Passive and Active Microrheology of the Intestinal Fluid of the Larval Zebrafish

Michael J. Taormina; Edouard A. Hay; Raghuveer Parthasarathy


Bulletin of the American Physical Society | 2015

Population dynamics of microbial communities in the zebrafish gut

Matthew Jemielita; Michael J. Taormina; Adam R. Burns; Jennifer Hampton; Annah S. Rolig; Travis J. Wiles; Karen Guillemin; Raghuveer Parthasarathy


Bulletin of the American Physical Society | 2015

A Combined Light Sheet Fluorescence and Differential Interference Contrast Microscope for Live Imaging of Multicellular Specimens

Ryan P. Baker; Michael J. Taormina; Matthew Jemielita; Raghuveer Parthasarathy

Collaboration


Dive into the Michael J. Taormina's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge