Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael J. Turell is active.

Publication


Featured researches published by Michael J. Turell.


Journal of The American Mosquito Control Association | 2008

Potential for North American mosquitoes to transmit Rift Valley fever virus.

Michael J. Turell; David J. Dohm; Christopher N. Mores; Dennis L. Wallette; Lawrence J. Hribar; James E. Pecor; Jamie A. Blow

ABSTRACT The rapid spread of West Nile viral activity across North America since its discovery in 1999 illustrates the potential for an exotic arbovirus to be introduced and widely established across North America. Rift Valley fever virus (RVFV) has been responsible for large outbreaks in Africa that have resulted in hundreds of thousands of human infections and major economic disruption due to loss of livestock and to trade restrictions. However, little is known about the potential for North American mosquitoes to transmit this virus should it be introduced into North America. Therefore, we evaluated selected mosquito species from the southeastern United States for their ability to serve as potential vectors for RVFV. Mosquitoes were fed on adult hamsters inoculated 1 day previously with RVFV. These mosquitoes were tested for infection and ability to transmit RVFV after incubation at 26°C for 7–21 days. None of the species tested (Aedes taeniorhynchus, Ae. vexans, Culex erraticus, Cx. nigripalpus, Cx. quinquefasciatus, and Cx. salinarius) were efficient vectors after they fed on hamsters with viremias ranging from 104.1 to 106.9 plaque-forming units (PFU)/ml. However, Ae. taeniorhynchus, Ae. vexans, and Cx. erraticus all developed disseminated infections after they fed on hamsters with viremias between 108.5 and 1010.2 PFU/ml, and both Ae. vexans and Cx. erraticus transmitted RVFV by bite. These studies illustrate the need to identify the ability of individual mosquito species to transmit RVFV so that appropriate decisions can be made concerning the application of control measures during an outbreak.


Journal of The American Mosquito Control Association | 2012

Members of the Culex pipiens Complex as Vectors of Viruses1

Michael J. Turell

Abstract Members of the Culex pipiens complex have been implicated as vectors of a number of arboviruses including St. Louis encephalitis, West Nile, Sindbis, and Rift Valley fever viruses. For some viruses, such as West Nile virus, laboratory studies have indicated that various members of this complex have a similar ability to become infected with and transmit virus, thus providing evidence for the similarity among the various members of this complex. On the other hand, although strains of Cx. pipiens from various parts of the world have all been relatively efficient vectors of Rift Valley fever virus, Cx. quinquefasciatus from Africa, Australia, and North America have been nearly refractory to this virus, thus indicating that the various members of this complex do not necessarily respond similarly to a particular arbovirus. Based on the similar response to some viruses and differing response to others, Cx. pipiens and Cx. quinquefasciatus appear to be closely related, but distinct species.


PLOS Neglected Tropical Diseases | 2010

Arbovirus detection in insect vectors by rapid, high-throughput pyrosequencing.

Kimberly A. Bishop-Lilly; Michael J. Turell; Kristin M Willner; Amy Butani; Nichole Nolan; Shannon M. Lentz; Arya Akmal; Al Mateczun; Trupti N. Brahmbhatt; Shanmuga Sozhamannan; Chris A. Whitehouse; Timothy D. Read

Background Despite the global threat caused by arthropod-borne viruses, there is not an efficient method for screening vector populations to detect novel viral sequences. Current viral detection and surveillance methods based on culture can be costly and time consuming and are predicated on prior knowledge of the etiologic agent, as they rely on specific oligonucleotide primers or antibodies. Therefore, these techniques may be unsuitable for situations when the causative agent of an outbreak is unknown. Methodology/Principal Findings In this study we explored the use of high-throughput pyrosequencing for surveillance of arthropod-borne RNA viruses. Dengue virus, a member of the positive strand RNA Flavivirus family that is transmitted by several members of the Aedes genus of mosquitoes, was used as a model. Aedes aegypti mosquitoes experimentally infected with dengue virus type 1 (DENV-1) were pooled with noninfected mosquitoes to simulate samples derived from ongoing arbovirus surveillance programs. Using random-primed methods, total RNA was reverse-transcribed and resulting cDNA subjected to 454 pyrosequencing. Conclusions/Significance In two types of samples, one with 5 adult mosquitoes infected with DENV-1- and the other with 1 DENV-1 infected mosquito and 4 noninfected mosquitoes, we identified DENV-1 DNA sequences. DENV-1 sequences were not detected in an uninfected control pool of 5 adult mosquitoes. We calculated the proportion of the Ae. aegypti metagenome contributed by each infecting Dengue virus genome (pIP), which ranged from 2.75×10−8 to 1.08×10−7. DENV-1 RNA was sufficiently concentrated in the mosquito that its detection was feasible using current high-throughput sequencing instrumentation. We also identified some of the components of the mosquito microflora on the basis of the sequence of expressed RNA. This included members of the bacterial genera Pirellula and Asaia, various fungi, and a potentially uncharacterized mycovirus.


Journal of The American Mosquito Control Association | 2007

VECTOR COMPETENCE OF KENYAN CULEX ZOMBAENSIS AND CULEX QUINQUEFASCIATUS MOSQUITOES FOR RIFT VALLEY FEVER VIRUS 1

Michael J. Turell; J.S. Lee; Jason H. Richardson; Rosemary Sang; E.N. Kioko; M.O. Agawo; J. Pecor; Monica L. O'Guinn

ABSTRACT Rift Valley fever (RVF) continues to be a significant problem in Kenya as well as in Egypt, Yemen, and Saudi Arabia. In order to determine the ability of Kenyan mosquitoes to transmit RVF virus (RVFV), we collected mosquitoes in the Lake Naivasha region of Kenya and evaluated them for their potential to transmit RVFV under laboratory conditions. After feeding on a hamster (Mesocricetus auratus) with a viremia of 109.7 plaque-forming units of virus/ml of blood, Culex zombaensis were highly susceptible to infection with RVFV, with 89% becoming infected. In contrast, Cx. quinquefasciatus that were fed on the same hamsters were marginally susceptible, with only 20% becoming infected. Differences in percentages of mosquitoes that developed a disseminated infection were equally disparate, with 55% and 8%, for Cx. zombaensis and Cx. quinquefasciatus, respectively. Forty-eight percent of the Cx. zombaensis with a disseminated infection that fed on a susceptible hamster transmitted virus by bite, indicating a moderate salivary gland barrier. However, the presence of a salivary gland barrier could not be determined for Cx. quinquefasciatus because none of the 18 mosquitoes that took a 2nd blood meal had a disseminated infection. These studies illustrate the need to identify the ability of individual mosquito species to transmit RVFV so that correct decisions can be made concerning the application of appropriate control measures during an outbreak.


Journal of Medical Entomology | 2013

Potential for Mosquitoes (Diptera: Culicidae) From Florida to Transmit Rift Valley Fever Virus

Michael J. Turell; Seth C. Britch; Robert L. Aldridge; Daniel L. Kline; Carl Boohene; Kenneth J. Linthicum

ABSTRACT n We evaluated Aedes atlanticus Dyar and Knab, Aedes infirmatus Dyar and Knab, Aedes vexans (Meigen), Anopheles crucians Wiedemann, Coquillettidia perturbans (Walker), Culex nigripalpus Theobald, Mansonia dyari Belkin, Heinemann, and Page, and Psorophora ferox (Von Humboldt) from Florida to determine which of these species should be targeted for control should Rift Valley fever virus (RVFV) be detected in North America. Female mosquitoes that had fed on adult hamsters inoculated with RVFV were incubated for 7–21 d at 26°C, then allowed to refeed on susceptible hamsters, and tested to determine infection, dissemination, and transmission rates. We also inoculated mosquitoes intrathoracically, held them for 7 d, and then allowed them to feed on a susceptible hamster to check for a salivary gland barrier. When exposed to hamsters with viremias ≥107.6 plaque-forming units per milliliter of blood, at least some individuals in each of the species tested became infected; however, Cx. nigripalpus, An. crucians, and Ae. infirmatus were essentially incompetent vectors in the laboratory because of either a midgut escape or salivary gland barrier. Each of the other species should be considered as potential vectors and would need to be controlled if RVFV were introduced into an area where they were found. Additional studies need to be conducted with other geographic populations of these species and to determine how environmental factors affect transmission.


American Journal of Tropical Medicine and Hygiene | 2012

Determinants of Anopheles seasonal distribution patterns across a forest to periurban gradient near Iquitos, Peru.

Drew D. Reinbold-Wasson; Michael R. Sardelis; James W. Jones; Douglas M. Watts; Roberto Fernandez; Faustino Carbajal; James E. Pecor; Carlos Calampa; Terry A. Klein; Michael J. Turell

As part of a field ecology study of arbovirus and malaria activity in the Amazon Basin, Loreto Department, Peru, we collected mosquitoes landing on humans at a forest site and inside and outside of residences and military barracks at periurban, rural, and village sites. We collected 11 Anopheles spp. from these four sites. An. darlingi, the principal malaria vector in the region, accounted for 98.7% of all Anopheles spp. collected at Puerto Almendra. Peaks in landing activity occurred during the December and April collection periods. However, the percent of sporozoite-positive Anopheles spp. was highest 1-2 months later, when landing activity decreased to approximately 10% of the peak activity periods. At all sites, peak landing activity occurred about 2 hours after sunset. These data provide a better understanding of the taxonomy, population density, and seasonal and habitat distribution of potential malaria vectors within the Amazon Basin region.


Journal of Medical Entomology | 2011

Ability of Selected Kenyan Mosquito (Diptera: Culicidae) Species to Transmit West Nile Virus Under Laboratory Conditions

Joel Lutomiah; Hellen Koka; James Mutisya; Santos Yalwala; Milka Muthoni; Albina Makio; Samson Limbaso; Lillian Musila; Jeffrey W. Clark; Michael J. Turell; Elizabeth Kioko; David Schnabel; Rosemary Sang

ABSTRACT n West Nile virus (WNV) is currently active in Kenya as evidenced by the detection of antibodies in birds bled as part of an avian influenza surveillance program in 2009. Although WNV has been isolated from several mosquito species in Kenya, no studies have ever been conducted to determine which of these species are competent vectors of this virus. Therefore, we allowed Kenyan mosquitoes to feed on 2- or 3-d-old chickens that had been infected with a Lineage one strain of WNV 24–48 h earlier. These mosquitoes were tested ≈2 wk later to determine infection, dissemination, and transmission rates. All five species [Culex quinquefasciatus Say, Culex univittatus Theobald, Culex vansomereni Edwards, Mansonia africana (Theobald), and Mansonia uniformis (Theobald)] were susceptible to infection, but disseminated infections were detected only in the three Culex, and not the two Mansonia species. Culex mosquitoes with a disseminated infection readily transmitted virus by bite, but even when inoculated with WNV, the two Mansonia failed to transmit virus, indicating a salivary gland barrier. These studies indicate that the three Culex species may play a role in the transmission of WNV in Kenya.


Journal of Medical Entomology | 2008

Seasonal Distribution, Biology, and Human Attraction Patterns of Mosquitoes (Diptera: Culicidae) in a Rural Village and Adjacent Forested Site Near Iquitos, Peru

Michael J. Turell; Michael R. Sardelis; James W. Jones; Douglas M. Watts; Roberto Fernandez; Faustino Carbajal; James E. Pecor; Terry A. Klein

Abstract This study was conducted as part of a field-ecology study of arboviral and malarial activity in the Amazon Basin, Loreto Department, Peru, to determine the relative abundance, species diversity, and seasonal and vertical distributions of potential mosquito vectors. Mosquitoes were captured either by volunteers using mouth aspirators while mosquitoes attempted to land on the collectors or in dry ice–baited ABC light traps. Anopheles darlingi, the principal malaria vector in the region, was the most commonly captured anopheline mosquito in Puerto Almendra village (99%) while landing on humans, with a mean of 37.1 mosquitoes captured per 24-h period, representing nearly one half of all mosquitoes collected. An. darlingi human landing activity began shortly after sunset, peaked at 2000–2100 hours, and declined gradually until sunrise. This species readily entered houses, because 51% of the An. darlingi captured by paired collectors, stationed inside and outside houses, were captured indoors. Human landing collections provided a more accurate estimate of human attraction of An. darlingi, capturing 30 times as many as co-located dry ice–baited ABC light traps. In contrast, eight times as many Culex (Melanoconion) species, including known arbovirus vectors, were captured in light traps as by co-located human collectors. Despite being located within 300 m of the village collection site, only a few Anopheles species were captured at the forest collection site, including only 0.1 An darlingi/24 h, thus indicating that An. darlingi activity was directly associated with the rural village. These data provide a better understanding of the taxonomy, population density, and seasonal distribution of potential mosquito vectors of disease within the Amazon Basin region and allow for the development of appropriate vector and disease prevention strategies that target vector populations.


Research and Reports in Tropical Medicine | 2011

Rift Valley fever virus-infected mosquito ova and associated pathology: possible implications for endemic maintenance

William S. Romoser; Marco V Neira Oviedo; Kriangkrai Lerdthusnee; Lisa A. Patrican; Michael J. Turell; David J. Dohm; Kenneth J. Linthicum; Charles L. Bailey

BackgroundnEndemic/Enzootic maintenance mechanisms like vertical transmission (pathogen passage from infected adults to their offspring) are central in the epidemiology of zoonotic pathogens. In Kenya, Rift Valley fever virus (RVFV) may be maintained by vertical transmission in ground-pool mosquitoes such as Aedes mcintoshi. RVFV can cause serious morbidity and mortality in humans and livestock. Past epidemics/epizootics have occurred in sub-Saharan Africa but, since the late 1970s, RVFV has also appeared in North Africa and the Middle East. Preliminary results revealed RVFV-infected eggs in Ae. mcintoshi after virus injection into the hemocoel after the first of two blood meals, justifying further study.nnnMethodsnMosquitoes were collected from an artificially flooded water-catching depression along a stream in Kenya, shipped live to the USA, and studied using an immunocytochemical method for RVFV-antigen localization in mosquito sections.nnnResults and conclusionnAfter virus injection into the hemocoel, RVFV-infected reproductive tissues were found, particularly follicular epithelia and oocyte/nurse cells. Ovarian infection from the hemocoel is a crucial step in establishing a vertically transmitting mosquito line. Ovarian follicles originate from germarial cells, primordia located distally in each ovariole, and infection of these cells is expected to be requisite for long-term vertical transmission. However, no germarial cell infection was found, so establishing a new line of vertically transmitting mosquitoes may require two generations. The findings support the hypothesis that Ae. mcintoshi is involved in the endemic maintenance of RVFV by vertical transmission. Detection of distinct pathology in infected eggs raises the possibility of virus-laden eggs being deposited among healthy eggs, thereby providing an exogenous source of infection via ingestion by mosquito larvae and other organisms. This has potentially significant epidemiological implications. Possible modes of entry of virus from the hemocoel into the ovaries and routes by which larvae might become infected by ingesting virus are discussed.


American Journal of Tropical Medicine and Hygiene | 2009

Development of Field-Based Real-Time Reverse Transcription-Polymerase Chain Reaction Assays for Detection of Chikungunya and O'nyong-nyong Viruses in Mosquitoes

Darci R. Smith; John S. Lee; Jordan Jahrling; David A. Kulesh; Michael J. Turell; Jennifer L. Groebner; Monica L. O'Guinn

Chikungunya (CHIK) and Onyong-nyong (ONN) are important emerging arthropod-borne diseases. Molecular diagnosis of these two viruses in mosquitoes has not been evaluated, and the effects of extraneous mosquito tissue on assay performance have not been tested. Additionally, no real-time reverse transcription-polymerase chain reaction (RT-PCR) assay exists for detecting ONN virus (ONNV) RNA. We describe the development of sensitive and specific real-time RT-PCR assays for detecting CHIK and ONN viral RNA in mosquitoes, which have application for field use. In addition, we compared three methods for primer/probe design for assay development by evaluating their sensitivity and specificity. This comparison resulted in development of virus-specific assays that could detect less than one plaque-forming unit equivalent of each of the viruses in mosquitoes. The use of these assays will aid in arthropod-borne disease surveillance and in the control of the associated diseases.

Collaboration


Dive into the Michael J. Turell's collaboration.

Top Co-Authors

Avatar

John S. Lee

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Monica L. O'Guinn

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Terry A. Klein

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

David J. Dohm

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Kenneth J. Linthicum

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Rosemary Sang

Kenya Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Se Hun Gu

University of Hawaii at Manoa

View shared research outputs
Researchain Logo
Decentralizing Knowledge