Michael J. Zilliox
Loyola University Chicago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael J. Zilliox.
Journal of Clinical Microbiology | 2014
Evann E. Hilt; Kathleen McKinley; Meghan M. Pearce; Amy B. Rosenfeld; Michael J. Zilliox; Elizabeth R. Mueller; Linda Brubaker; Xiaowu Gai; Alan J. Wolfe; Paul C. Schreckenberger
ABSTRACT Our previous study showed that bacterial genomes can be identified using 16S rRNA sequencing in urine specimens of both symptomatic and asymptomatic patients who are culture negative according to standard urine culture protocols. In the present study, we used a modified culture protocol that included plating larger volumes of urine, incubation under varied atmospheric conditions, and prolonged incubation times to demonstrate that many of the organisms identified in urine by 16S rRNA gene sequencing are, in fact, cultivable using an expanded quantitative urine culture (EQUC) protocol. Sixty-five urine specimens (from 41 patients with overactive bladder and 24 controls) were examined using both the standard and EQUC culture techniques. Fifty-two of the 65 urine samples (80%) grew bacterial species using EQUC, while the majority of these (48/52 [92%]) were reported as no growth at 103 CFU/ml by the clinical microbiology laboratory using the standard urine culture protocol. Thirty-five different genera and 85 different species were identified by EQUC. The most prevalent genera isolated were Lactobacillus (15%), followed by Corynebacterium (14.2%), Streptococcus (11.9%), Actinomyces (6.9%), and Staphylococcus (6.9%). Other genera commonly isolated include Aerococcus, Gardnerella, Bifidobacterium, and Actinobaculum. Our current study demonstrates that urine contains communities of living bacteria that comprise a resident female urine microbiota.
Mbio | 2014
Meghan M. Pearce; Evann E. Hilt; Amy B. Rosenfeld; Michael J. Zilliox; Krystal Thomas-White; Cynthia S. Fok; Stephanie Kliethermes; Paul C. Schreckenberger; Linda Brubaker; Xiaowu Gai; Alan J. Wolfe
ABSTRACT Bacterial DNA and live bacteria have been detected in human urine in the absence of clinical infection, challenging the prevailing dogma that urine is normally sterile. Urgency urinary incontinence (UUI) is a poorly understood urinary condition characterized by symptoms that overlap urinary infection, including urinary urgency and increased frequency with urinary incontinence. The recent discovery of the urinary microbiome warrants investigation into whether bacteria contribute to UUI. In this study, we used 16S rRNA gene sequencing to classify bacterial DNA and expanded quantitative urine culture (EQUC) techniques to isolate live bacteria in urine collected by using a transurethral catheter from women with UUI and, in comparison, a cohort without UUI. For these cohorts, we demonstrated that the UUI and non-UUI urinary microbiomes differ by group based on both sequence and culture evidences. Compared to the non-UUI microbiome, sequencing experiments revealed that the UUI microbiome was composed of increased Gardnerella and decreased Lactobacillus. Nine genera (Actinobaculum, Actinomyces, Aerococcus, Arthrobacter, Corynebacterium, Gardnerella, Oligella, Staphylococcus, and Streptococcus) were more frequently cultured from the UUI cohort. Although Lactobacillus was isolated from both cohorts, distinctions existed at the species level, with Lactobacillus gasseri detected more frequently in the UUI cohort and Lactobacillus crispatus most frequently detected in controls. Combined, these data suggest that potentially important differences exist in the urinary microbiomes of women with and without UUI, which have strong implications in prevention, diagnosis, or treatment of UUI. IMPORTANCE New evidence indicates that the human urinary tract contains microbial communities; however, the role of these communities in urinary health remains to be elucidated. Urgency urinary incontinence (UUI) is a highly prevalent yet poorly understood urinary condition characterized by urgency, frequency, and urinary incontinence. Given the significant overlap of UUI symptoms with those of urinary tract infections, it is possible that UUI may have a microbial component. We compared the urinary microbiomes of women affected by UUI to those of a comparison group without UUI, using both high-throughput sequencing and extended culture techniques. We identified statistically significant differences in the frequency and abundance of bacteria present. These differences suggest a potential role for the urinary microbiome in female urinary health. New evidence indicates that the human urinary tract contains microbial communities; however, the role of these communities in urinary health remains to be elucidated. Urgency urinary incontinence (UUI) is a highly prevalent yet poorly understood urinary condition characterized by urgency, frequency, and urinary incontinence. Given the significant overlap of UUI symptoms with those of urinary tract infections, it is possible that UUI may have a microbial component. We compared the urinary microbiomes of women affected by UUI to those of a comparison group without UUI, using both high-throughput sequencing and extended culture techniques. We identified statistically significant differences in the frequency and abundance of bacteria present. These differences suggest a potential role for the urinary microbiome in female urinary health.
Nucleic Acids Research | 2011
Matthew N. McCall; Karan Uppal; Harris A. Jaffee; Michael J. Zilliox; Rafael A. Irizarry
Various databases have harnessed the wealth of publicly available microarray data to address biological questions ranging from across-tissue differential expression to homologous gene expression. Despite their practical value, these databases rely on relative measures of expression and are unable to address the most fundamental question—which genes are expressed in a given cell type. The Gene Expression Barcode is the first database to provide reliable absolute measures of expression for most annotated genes for 131 human and 89 mouse tissue types, including diseased tissue. This is made possible by a novel algorithm that leverages information from the GEO and ArrayExpress public repositories to build statistical models that permit converting data from a single microarray into expressed/unexpressed calls for each gene. For selected platforms, users may upload data and obtain results in a matter of seconds. The raw data, curated annotation, and code used to create our resource are also available at http://rafalab.jhsph.edu/barcode.
Nature Methods | 2007
Michael J. Zilliox; Rafael A. Irizarry
The ability to measure genome-wide expression holds great promise for characterizing cells and distinguishing diseased from normal tissues. Thus far, microarray technology has been useful only for measuring relative expression between two or more samples, which has handicapped its ability to classify tissue types. Here we present a method that can successfully predict tissue type based on data from a single hybridization. A preliminary web-tool is available online (http://rafalab.jhsph.edu/barcode/).
Journal of Immunology | 2011
Jaikumar Duraiswamy; Chris Ibegbu; David Masopust; Joseph D. Miller; Koichi Araki; Gregory H. Doho; Pramila Tata; Satish Gupta; Michael J. Zilliox; Helder I. Nakaya; Bali Pulendran; W. Nicholas Haining; Gordon J. Freeman; Rafi Ahmed
T cell dysfunction is an important feature of many chronic viral infections. In particular, it was shown that programmed death-1 (PD-1) regulates T cell dysfunction during chronic lymphocytic choriomeningitis virus infection in mice, and PD-1hi cells exhibit an intense exhausted gene signature. These findings were extended to human chronic infections such as HIV, hepatitis C virus, and hepatitis B virus. However, it is not known if PD-1hi cells of healthy humans have the traits of exhausted cells. In this study, we provide a comprehensive description of phenotype, function, and gene expression profiles of PD-1hi versus PD-1lo CD8 T cells in the peripheral blood of healthy human adults as follows: 1) the percentage of naive and memory CD8 T cells varied widely in the peripheral blood cells of healthy humans, and PD-1 was expressed by the memory CD8 T cells; 2) PD-1hi CD8 T cells in healthy humans did not significantly correlate with the PD-1hi exhausted gene signature of HIV-specific human CD8 T cells or chronic lymphocytic choriomeningitis virus-specific CD8 T cells from mice; 3) PD-1 expression did not directly affect the ability of CD8 T cells to secrete cytokines in healthy adults; 4) PD-1 was expressed by the effector memory compared with terminally differentiated effector CD8 T cells; and 5) finally, an interesting inverse relationship between CD45RA and PD-1 expression was observed. In conclusion, our study shows that most PD-1hi CD8 T cells in healthy adult humans are effector memory cells rather than exhausted cells.
Journal of Virology | 2013
Wendy G. Tan; Hyun Tak Jin; Erin E. West; Pablo Penaloza-MacMaster; Andreas Wieland; Michael J. Zilliox; M. Juliana McElrath; Dan H. Barouch; Rafi Ahmed
ABSTRACT Adenovirus (Ad) vectors are widely used as experimental vaccines against several infectious diseases, but the magnitude, phenotype, and functionality of CD8+ T cell responses induced by different adenovirus serotypes have not been compared. To address this question, we have analyzed simian immunodeficiency virus Gag-specific CD8+ T cell responses in mice following vaccination with Ad5, Ad26, and Ad35. Our results show that although Ad5 is more immunogenic than Ad26 and Ad35, the phenotype, function, and recall potential of memory CD8+ T cells elicited by these vectors are substantially different. Ad26 and Ad35 vectors generated CD8+ T cells that display the phenotype and function of long-lived memory T cells, whereas Ad5 vector-elicited CD8+ T cells are of a more terminally differentiated phenotype. In addition, hepatic memory CD8+ T cells elicited by Ad26 and Ad35 mounted more robust recall proliferation following secondary challenge than those induced by Ad5. Furthermore, the boosting potential was higher following priming with alternative-serotype Ad vectors than with Ad5 vectors in heterologous prime-boost regimens. Anamnestic CD8+ T cell responses were further enhanced when the duration between priming and boosting was extended from 30 to 60 days. Our results demonstrate that heterologous prime-boost vaccine regimens with alternative-serotype Ad vectors elicited more functional memory CD8+ T cells than any of the regimens containing Ad5. In summary, these results suggest that alternative-serotype Ad vectors will prove useful as candidates for vaccine development against human immunodeficiency virus type 1 and other pathogens and also emphasize the importance of a longer rest period between prime and boost for generating optimal CD8+ T cell immunity.
Clinical and Vaccine Immunology | 2007
Michael J. Zilliox; William J. Moss; Diane E. Griffin
ABSTRACT Measles virus continues to cause morbidity and mortality despite the existence of a safe and efficacious vaccine. Measles is associated with induction of both a long-lived protective immune response and immunosuppression. To gain insight into immunological changes during measles virus infection, we examined gene expression in blood mononuclear cells from children with acute measles and children in the convalescent phase compared to uninfected control children. There were 13 significantly upregulated and 206 downregulated genes. Upregulated genes included the immune regulatory molecules interleukin 1β (IL-1β), CIAS-1, tumor necrosis factor alpha, PDE4B, PTGS2, IL-8, CXCL2, CCL4, ICAM-1, CD83, GOS-2, IER3 (IEX-1), and TNFAIP3 (A20). Plasma levels of IL-1β and IL-8 were elevated during measles virus infection. Downregulated genes mainly involved three gene ontology biological processes, transcription, signal transduction, and the immune response, and included IL-16 and cell surface receptors IL-4R, IL-6R, IL-7R, IL-27RA, CCR2, and CCR7. Most mRNAs had not returned to control values 1 month after discharge, consistent with prolonged immune response abnormalities during measles virus infection.
Nucleic Acids Research | 2014
Matthew N. McCall; Harris A. Jaffee; Susan Zelisko; Neeraj Sinha; Guido Hooiveld; Rafael A. Irizarry; Michael J. Zilliox
The Gene Expression Barcode project, http://barcode.luhs.org, seeks to determine the genes expressed for every tissue and cell type in humans and mice. Understanding the absolute expression of genes across tissues and cell types has applications in basic cell biology, hypothesis generation for gene function and clinical predictions using gene expression signatures. In its current version, this project uses the abundant publicly available microarray data sets combined with a suite of single-array preprocessing, quality control and analysis methods. In this article, we present the improvements that have been made since the previous version of the Gene Expression Barcode in 2011. These include a variety of new data mining tools and summaries, estimated transcriptomes and curated annotations.
European Journal of Immunology | 2013
Smita S. Iyer; Donald R. Latner; Michael J. Zilliox; Megan McCausland; Rama Akondy; Pablo Penaloza-MacMaster; Jeffrey Scott Hale; Lilin Ye; Ata Ur Rasheed Mohammed; Tomoyuki Yamaguchi; Shimon Sakaguchi; Rama Rao Amara; Rafi Ahmed
CD4+ T follicular helper (TFH) cells are central for generation of long‐term B‐cell immunity. A defining phenotypic attribute of TFH cells is the expression of the chemokine R CXCR5, and TFH cells are typically identified by co‐expression of CXCR5 together with other markers such as PD‐1, ICOS, and Bcl‐6. Herein, we report high‐level expression of the nutrient transporter folate R 4 (FR4) on TFH cells in acute viral infection. Distinct from the expression profile of conventional TFH markers, FR4 was highly expressed by naive CD4+ T cells, was downregulated after activation and subsequently re‐expressed on TFH cells. Furthermore, FR4 expression was maintained, albeit at lower levels, on memory TFH cells. Comparative gene expression profiling of FR4hi versus FR4lo Ag‐specific CD4+ effector T cells revealed a molecular signature consistent with TFH and TH1 subsets, respectively. Interestingly, genes involved in the purine metabolic pathway, including the ecto‐enzyme CD73, were enriched in TFH cells compared with TH1 cells, and phenotypic analysis confirmed expression of CD73 on TFH cells. As there is now considerable interest in developing vaccines that would induce optimal TFH cell responses, the identification of two novel cell surface markers should be useful in characterization and identification of TFH cells following vaccination and infection.
Bioinformatics | 2013
George Wu; Jason T. Yustein; Matthew N. McCall; Michael J. Zilliox; Rafael A. Irizarry; Karen I. Zeller; Chi V. Dang; Hongkai Ji
Motivation: Although chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) or tiling array hybridization (ChIP-chip) is increasingly used to map genome-wide–binding sites of transcription factors (TFs), it still remains difficult to generate a quality ChIPx (i.e. ChIP-seq or ChIP-chip) dataset because of the tremendous amount of effort required to develop effective antibodies and efficient protocols. Moreover, most laboratories are unable to easily obtain ChIPx data for one or more TF(s) in more than a handful of biological contexts. Thus, standard ChIPx analyses primarily focus on analyzing data from one experiment, and the discoveries are restricted to a specific biological context. Results: We propose to enrich this existing data analysis paradigm by developing a novel approach, ChIP-PED, which superimposes ChIPx data on large amounts of publicly available human and mouse gene expression data containing a diverse collection of cell types, tissues and disease conditions to discover new biological contexts with potential TF regulatory activities. We demonstrate ChIP-PED using a number of examples, including a novel discovery that MYC, a human TF, plays an important functional role in pediatric Ewing sarcoma cell lines. These examples show that ChIP-PED increases the value of ChIPx data by allowing one to expand the scope of possible discoveries made from a ChIPx experiment. Availability: http://www.biostat.jhsph.edu/∼gewu/ChIPPED/ Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.