Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael James Rishel is active.

Publication


Featured researches published by Michael James Rishel.


Journal of the American Chemical Society | 2014

The disaccharide moiety of bleomycin facilitates uptake by cancer cells.

Benjamin R. Schroeder; M. Imran Ghare; Chandrabali Bhattacharya; Rakesh Paul; Zhiqiang Yu; Paul A. Zaleski; Trevor C. Bozeman; Michael James Rishel; Sidney M. Hecht

The disaccharide moiety is responsible for the tumor cell targeting properties of bleomycin (BLM). While the aglycon (deglycobleomycin) mediates DNA cleavage in much the same fashion as bleomycin, it exhibits diminished cytotoxicity in comparison to BLM. These findings suggested that BLM might be modular in nature, composed of tumor-seeking and tumoricidal domains. To explore this possibility, BLM analogues were prepared in which the disaccharide moiety was attached to deglycobleomycin at novel positions, namely, via the threonine moiety or C-terminal substituent. The analogues were compared with BLM and deglycoBLM for DNA cleavage, cancer cell uptake, and cytotoxic activity. BLM is more potent than deglycoBLM in supercoiled plasmid DNA relaxation, while the analogue having the disaccharide on threonine was less active than deglycoBLM and the analogue containing the C-terminal disaccharide was slightly more potent. While having unexceptional DNA cleavage potencies, both glycosylated analogues were more cytotoxic to cultured DU145 prostate cancer cells than deglycoBLM. Dye-labeled conjugates of the cytotoxic BLM aglycons were used in imaging experiments to determine the extent of cell uptake. The rank order of internalization efficiencies was the same as their order of cytotoxicities toward DU145 cells. These findings establish a role for the BLM disaccharide in tumor targeting/uptake and suggest that the disaccharide moiety may be capable of delivering other cytotoxins to cancer cells. While the mechanism responsible for uptake of the BLM disaccharide selectively by tumor cells has not yet been established, data are presented which suggest that the metabolic shift to glycolysis in cancer cells may provide the vehicle for selective internalization.


Biochemistry | 2014

The carbamoylmannose moiety of bleomycin mediates selective tumor cell targeting.

Chandrabali Bhattacharya; Zhiqiang Yu; Michael James Rishel; Sidney M. Hecht

Recently, we reported that both bleomycin (BLM) and its disaccharide, conjugated to the cyanine dye Cy5**, bound selectively to cancer cells. Thus, the disaccharide moiety alone recapitulates the tumor cell targeting properties of BLM. Here, we demonstrate that the conjugate of the BLM carbamoylmannose moiety with Cy5** showed tumor cell selective binding and also enhanced cellular uptake in most cancer cell lines. The carbamoyl functionality was required for tumor cell targeting. A dye conjugate prepared from a trivalent cluster of carbamoylmannose exhibited levels of tumor cell binding and internalization significantly greater than those of the simple carbamoylmannose–dye conjugate, consistent with a possible multivalent receptor.


Journal of Organic Chemistry | 2009

Asymmetric synthesis of tetrabenazine and dihydrotetrabenazine.

Michael James Rishel; Kande Kankanamalage Dayarathna Amarasinghe; Sean Richard Dinn; Bruce Fletcher Johnson

The enantioselective synthesis of (+)-tetrabenazine (TBZ) and (+)-dihydrotetrabenazine (DTBZ), agents of significant interest for therapeutic and molecular imaging applications, has been completed in 21% (TBZ) and 16% (DTBZ) overall yield and in >97% ee from the starting dihydroisoquinoline. The synthesis utilizes Sodeokas palladium-catalyzed asymmetric malonate addition to set the initial stereocenter followed by a number of diastereoselective transformations to incorporate the remaining asymmetric centers.


Biochemistry | 2015

Structural Features Facilitating Tumor Cell Targeting and Internalization by Bleomycin and Its Disaccharide

Zhiqiang Yu; Rakesh Paul; Chandrabali Bhattacharya; Trevor C. Bozeman; Michael James Rishel; Sidney M. Hecht

We have shown previously that the bleomycin (BLM) carbohydrate moiety can recapitulate the tumor cell targeting effects of the entire BLM molecule, that BLM itself is modular in nature consisting of a DNA-cleaving aglycone which is delivered selectively to the interior of tumor cells by its carbohydrate moiety, and that there are disaccharides structurally related to the BLM disaccharide which are more efficient than the natural disaccharide at tumor cell targeting/uptake. Because BLM sugars can deliver molecular cargoes selectively to tumor cells, and thus potentially form the basis for a novel antitumor strategy, it seemed important to consider additional structural features capable of affecting the efficiency of tumor cell recognition and delivery. These included the effects of sugar polyvalency and net charge (at physiological pH) on tumor cell recognition, internalization, and trafficking. Since these parameters have been shown to affect cell surface recognition, internalization, and distribution in other contexts, this study has sought to define the effects of these structural features on tumor cell recognition by bleomycin and its disaccharide. We demonstrate that both can have a significant effect on tumor cell binding/internalization, and present data which suggests that the metal ions normally bound by bleomycin following clinical administration may significantly contribute to the efficiency of tumor cell uptake, in addition to their characterized function in DNA cleavage. A BLM disaccharide-Cy5** conjugate incorporating the positively charged dipeptide d-Lys-d-Lys was found to associate with both the mitochondria and the nuclear envelope of DU145 cells, suggesting possible cellular targets for BLM disaccharide–cytotoxin conjugates.


Biochemistry | 2014

Modified Bleomycin Disaccharides Exhibiting Improved Tumor Cell Targeting

Manikandadas M. Madathil; Chandrabali Bhattacharya; Zhiqiang Yu; Rakesh Paul; Michael James Rishel; Sidney M. Hecht

The bleomycins (BLMs) are a family of antitumor antibiotics used clinically for anticancer chemotherapy. Their antitumor selectivity derives at least in part from their ability to target tumor cells, a property that resides in the carbohydrate moiety of the antitumor agent. In earlier studies, we have demonstrated that the tumor cell selectivity resides in the mannose carbamoyl moiety of the BLM saccharide and that both the BLM disaccharide and monosaccharide containing the carbamoyl moiety were capable of the delivery/uptake of a conjugated cyanine dye into cultured cancer cell lines. Presently, the nature of the participation of the carbamoyl moiety has been explored further to provide compounds of utility for defining the nature of the mechanism of tumor cell recognition and uptake by BLM saccharides and in the hope that more efficient compounds could be identified. A library of seven disaccharide–Cy5** dye conjugates was prepared that are structural analogues of the BLM disaccharide. These differed from the natural BLM disaccharide in the position, orientation, and substitution of the carbamoyl group. Studies of these compounds in four matched sets of tumor and normal cell lines revealed a few that were both tumor cell selective and internalized 2–4-fold more efficiently than the natural BLM disaccharide.


The Journal of Nuclear Medicine | 2014

Functional Imaging of Oxidative Stress with a Novel PET Imaging Agent, 18F-5-Fluoro-l-Aminosuberic Acid

Jack M. Webster; Christine Morton; Bruce Fletcher Johnson; Hua Yang; Michael James Rishel; Brian Duh-Lan Lee; Qing Miao; Chittari Pabba; Donald Yapp; Paul Schaffer

Glutathione is the predominant endogenous cellular antioxidant, playing a critical role in the cellular defensive response to oxidative stress by neutralizing free radicals and reactive oxygen species. With cysteine as the rate-limiting substrate in glutathione biosynthesis, the cystine/glutamate transporter (system xc-) represents a potentially attractive PET biomarker to enable in vivo quantification of xc- activity in response to oxidative stress associated with disease. We have developed a system xc- substrate that incorporates characteristics of both natural substrates, l-cystine and l-glutamate (l-Glu). l-aminosuberic acid (l-ASu) has been identified as a more efficient system xc- substrate than l-Glu, leading to an assessment of a series of anionic amino acids as prospective PET tracers. Herein, we report the synthesis and in vitro and in vivo validation of a lead candidate, 18F-5-fluoro-aminosuberic acid (18F-FASu), as a PET tracer for functional imaging of a cellular response to oxidative stress with remarkable tumor uptake and retention. Methods: 18F-FASu was identified as a potential PET tracer based on an in vitro screening of compounds similar to l-cystine and l-Glu. Affinity toward system xc- was determined via in vitro uptake and inhibition studies using oxidative stress–induced EL4 and SKOV-3 cells. In vivo biodistribution and PET imaging studies were performed in mice bearing xenograft tumors (EL4 and SKOV-3). Results: In vitro assay results determined that l-ASu inhibited system xc- as well as or better than l-Glu. The direct comparison of uptake of tritiated compounds demonstrated more efficient system xc- uptake of l-ASu than l-Glu. Radiosynthesis of 18F-FASu allowed the validation of uptake for the fluorine-bearing derivative in vitro. Evaluation in vivo demonstrated primarily renal clearance and uptake of approximately 8 percentage injected dose per gram in SKOV-3 tumors, with tumor-to-blood and tumor-to-muscle ratios of approximately 12 and approximately 28, respectively. 18F-FASu uptake was approximately 5 times greater than 18F-FDG uptake in SKOV-3 tumors. Dynamic PET imaging demonstrated uptake in EL4 tumor xenografts of approximately 6 percentage injected dose per gram and good tumor retention for at least 2 h after injection. Conclusion: 18F-FASu is a potentially useful metabolic tracer for PET imaging of a functional cellular response to oxidative stress. 18F-FASu may provide more sensitive detection than 18F-FDG in certain tumors.


The Journal of Nuclear Medicine | 2017

18F-5-fluoro-aminosuberic acid (FASu) as a potential tracer to gauge oxidative stress in breast cancer models.

Hua Yang; Silvia Jenni; Milena Čolović; Helen Merkens; Carlee Poleschuk; Isabel Rodrigo; Qing Miao; Bruce Fletcher Johnson; Michael James Rishel; Vesna Sossi; Jack M. Webster; Francois Benard; Paul Schaffer

The cystine transporter (system xC−) is an antiporter of cystine and glutamate. It has relatively low basal expression in most tissues and becomes upregulated in cells under oxidative stress (OS) as one of the genes expressed in response to the antioxidant response element promoter. We have developed 18F-5-fluoroaminosuberic acid (FASu), a PET tracer that targets system xC−. The goal of this study was to evaluate 18F-FASu as a specific gauge for system xC− activity in vivo and its potential for breast cancer imaging. Methods: 18F-FASu specificity toward system xC− was studied by cell inhibition assay, cellular uptake after OS induction with diethyl maleate, with and without anti-xCT small interfering RNA knockdown, in vitro uptake studies, and in vivo uptake in a system xC−–transduced xenograft model. In addition, radiotracer uptake was evaluated in 3 breast cancer models: MDA-MB-231, MCF-7, and ZR-75-1. Results: Reactive oxygen species–inducing diethyl maleate increased glutathione levels and 18F-FASu uptake, whereas gene knockdown with anti-xCT small interfering RNA led to decreased tracer uptake. 18F-FASu uptake was robustly inhibited by system xC− inhibitors or substrates, whereas uptake was significantly higher in transduced cells and tumors expressing xCT than in wild-type HEK293T cells and tumors (P < 0.0001 for cells, P = 0.0086 for tumors). 18F-FASu demonstrated tumor uptake in all 3 breast cancer cell lines studied. Among them, triple-negative breast cancer MDA-MB-231, which has the highest xCT messenger RNA level, had the highest tracer uptake (P = 0.0058 when compared with MCF-7; P < 0.0001 when compared with ZR-75-1). Conclusion: 18F-FASu as a system xC− substrate is a specific PET tracer for functional monitoring of system xC− and OS imaging. By enabling noninvasive analysis of xC− responses in vivo, this biomarker may serve as a valuable target for the diagnosis and treatment monitoring of certain breast cancers.


Bioorganic & Medicinal Chemistry Letters | 2014

A simple route to [11C]N-Me labeling of aminosuberic acid for proof of feasibility imaging of the xC− transporter

Hua Yang; Qing Miao; Bruce Fletcher Johnson; Michael James Rishel; Vesna Sossi; Katherine Dinelle; Francois Benard; Donald Yapp; Jack M. Webster; Paul Schaffer

Oxidative stress has been implicated in a variety of conditions, including cancer, heart failure, diabetes, neurodegeneration and other diseases. A potential biomarker for oxidative stress is the cystine/glutamate transporter, system x(C)(-). L-Aminosuberic acid (L-ASu) has been identified as a system x(C)(-) substrate. Here we report a facile method for [(11)C]N-Me labeling of L-ASu, automation of the radiochemical process, and preliminary PET imaging with EL4 tumor bearing mice. The results demonstrate uptake in the tumor above background, warranting further studies on the use of radiolabeled analogs of L-ASu as a PET imaging agent for system x(C)(-).


Journal of the American Chemical Society | 2013

Selective Tumor Cell Targeting by the Disaccharide Moiety of Bleomycin

Zhiqiang Yu; Ryan M. Schmaltz; Trevor C. Bozeman; Rakesh Paul; Michael James Rishel; Krystal S. Tsosie; Sidney M. Hecht


Archive | 2008

Method for making tetrabenazine compounds

Michael James Rishel; Kande Kankananamalage Dayarathna Amarasinghe; Sean Richard Dinn; Bruce Fletcher Johnson

Collaboration


Dive into the Michael James Rishel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhiqiang Yu

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge