Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael K. Cooper is active.

Publication


Featured researches published by Michael K. Cooper.


Nature | 2000

Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine.

Jussi Taipale; James K. Chen; Michael K. Cooper; Baolin Wang; Randall K. Mann; Ljiljana Milenkovic; Matthew P. Scott; Philip A. Beachy

Basal cell carcinoma, medulloblastoma, rhabdomyosarcoma and other human tumours are associated with mutations that activate the proto-oncogene Smoothened (SMO) or that inactivate the tumour suppressor Patched (PTCH). Smoothened and Patched mediate the cellular response to the Hedgehog (Hh) secreted protein signal, and oncogenic mutations affecting these proteins cause excess activity of the Hh response pathway. Here we show that the plant-derived teratogen cyclopamine, which inhibits the Hh response, is a potential ‘mechanism-based’ therapeutic agent for treatment of these tumours. We show that cyclopamine or synthetic derivatives with improved potency block activation of the Hh response pathway and abnormal cell growth associated with both types of oncogenic mutation. Our results also indicate that cyclopamine may act by influencing the balance between active and inactive forms of Smoothened.


Nature | 2002

Patched acts catalytically to suppress the activity of Smoothened.

Jussi Taipale; Michael K. Cooper; Tapan Maiti; Philip A. Beachy

Mutations affecting the transmembrane proteins Patched (Ptc) or Smoothened (Smo) that trigger ligand-independent activity of the Hedgehog (Hh) signalling pathway are associated with human tumours such as basal cell carcinoma (BCC) and medulloblastoma. Despite extensive genetic studies demonstrating the importance of these receptor components in embryonic patterning and cancer, the mechanism by which Ptc regulates Smo is not understood. Here we report that Ptc and Smo are not significantly associated within Hh-responsive cells. Furthermore, we show that free Ptc (unbound by Hh) acts sub-stoichiometrically to suppress Smo activity and thus is critical in specifying the level of pathway activity. Patched is a twelve-transmembrane protein with homology to bacterial proton-driven transmembrane molecular transporters; we demonstrate that the function of Ptc is impaired by alterations of residues that are conserved in and required for function of these bacterial transporters. These results suggest that the Ptc tumour suppressor functions normally as a transmembrane molecular transporter, which acts indirectly to inhibit Smo activity, possibly through changes in distribution or concentration of a small molecule.


Nature Genetics | 2003

A defective response to Hedgehog signaling in disorders of cholesterol biosynthesis

Michael K. Cooper; Christopher A. Wassif; Patrycja A. Krakowiak; Jussi Taipale; Ruoyu Gong; Richard I. Kelley; Forbes D. Porter; Philip A. Beachy

Smith–Lemli–Opitz syndrome (SLOS), desmosterolosis and lathosterolosis are human syndromes caused by defects in the final stages of cholesterol biosynthesis. Many of the developmental malformations in these syndromes occur in tissues and structures whose embryonic patterning depends on signaling by the Hedgehog (Hh) family of secreted proteins. Here we report that response to the Hh signal is compromised in mutant cells from mouse models of SLOS and lathosterolosis and in normal cells pharmacologically depleted of sterols. We show that decreasing levels of cellular sterols correlate with diminishing responsiveness to the Hh signal. This diminished response occurs at sterol levels sufficient for normal autoprocessing of Hh protein, which requires cholesterol as cofactor and covalent adduct. We further find that sterol depletion affects the activity of Smoothened (Smo), an essential component of the Hh signal transduction apparatus.


Oncogene | 2007

Ligand-dependent activation of the hedgehog pathway in glioma progenitor cells.

Moneeb Ehtesham; A Sarangi; Juan G. Valadez; S Chanthaphaychith; Mark W. Becher; Ty W. Abel; Reid C. Thompson; Michael K. Cooper

The hedgehog (Hh) signaling pathway regulates progenitor cells during embryogenesis and tumorigenesis in multiple organ systems. We have investigated the activity of this pathway in adult gliomas, and demonstrate that the Hh pathway is operational and activated within grade II and III gliomas, but not grade IV de novo glioblastoma multiforme. Furthermore, our studies reveal that pathway activity and responsiveness is confined to progenitor cells within these tumors. Additionally, we demonstrate that Hh signaling in glioma progenitor cells is ligand-dependent and provide evidence documenting the in vivo source of Sonic hedgehog protein. These findings suggest a regulatory role for the Hh pathway in progenitor cells within grade II and III gliomas, and the potential clinical utility of monitoring and targeting this pathway in these primary brain tumors.


Journal of Clinical Oncology | 2014

Cytogenetic Prognostication Within Medulloblastoma Subgroups

David Shih; Paul A. Northcott; Marc Remke; Andrey Korshunov; Vijay Ramaswamy; Marcel Kool; Betty Luu; Yuan Yao; Xin Wang; Adrian Dubuc; Livia Garzia; John Peacock; Stephen C. Mack; Xiaochong Wu; Adi Rolider; A. Sorana Morrissy; Florence M.G. Cavalli; David T. W. Jones; Karel Zitterbart; Claudia C. Faria; Ulrich Schüller; Leos Kren; Toshihiro Kumabe; Teiji Tominaga; Young Shin Ra; Miklós Garami; Péter Hauser; Jennifer A. Chan; Shenandoah Robinson; László Bognár

PURPOSE Medulloblastoma comprises four distinct molecular subgroups: WNT, SHH, Group 3, and Group 4. Current medulloblastoma protocols stratify patients based on clinical features: patient age, metastatic stage, extent of resection, and histologic variant. Stark prognostic and genetic differences among the four subgroups suggest that subgroup-specific molecular biomarkers could improve patient prognostication. PATIENTS AND METHODS Molecular biomarkers were identified from a discovery set of 673 medulloblastomas from 43 cities around the world. Combined risk stratification models were designed based on clinical and cytogenetic biomarkers identified by multivariable Cox proportional hazards analyses. Identified biomarkers were tested using fluorescent in situ hybridization (FISH) on a nonoverlapping medulloblastoma tissue microarray (n = 453), with subsequent validation of the risk stratification models. RESULTS Subgroup information improves the predictive accuracy of a multivariable survival model compared with clinical biomarkers alone. Most previously published cytogenetic biomarkers are only prognostic within a single medulloblastoma subgroup. Profiling six FISH biomarkers (GLI2, MYC, chromosome 11 [chr11], chr14, 17p, and 17q) on formalin-fixed paraffin-embedded tissues, we can reliably and reproducibly identify very low-risk and very high-risk patients within SHH, Group 3, and Group 4 medulloblastomas. CONCLUSION Combining subgroup and cytogenetic biomarkers with established clinical biomarkers substantially improves patient prognostication, even in the context of heterogeneous clinical therapies. The prognostic significance of most molecular biomarkers is restricted to a specific subgroup. We have identified a small panel of cytogenetic biomarkers that reliably identifies very high-risk and very low-risk groups of patients, making it an excellent tool for selecting patients for therapy intensification and therapy de-escalation in future clinical trials.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Transventricular delivery of Sonic hedgehog is essential to cerebellar ventricular zone development

Xi Huang; Jiang Liu; Tatiana Ketova; Jonathan T. Fleming; Vandana K. Grover; Michael K. Cooper; Ying Litingtung; Chin Chiang

Cerebellar neurons are generated from two germinal neuroepithelia: the ventricular zone (VZ) and rhombic lip. Signaling mechanisms that maintain the proliferative capacity of VZ resident progenitors remain elusive. We reveal that Sonic hedgehog (Shh) signaling is active in the cerebellar VZ and essential to radial glial cell proliferation and expansion of GABAergic interneurons. We demonstrate that the cerebellum is not the source of Shh that signals to the early VZ, and suggest a transventricular path for Shh ligand delivery. In agreement, we detected the presence of Shh protein in the circulating embryonic cerebrospinal fluid. This study identifies Shh as an essential proliferative signal for the cerebellar ventricular germinal zone, underscoring the potential contribution of VZ progenitors in the pathogenesis of cerebellar diseases associated with deregulated Shh signaling, and reveals a transventricular source of Shh in regulating neural development.


Cancer Cell | 2017

Intertumoral Heterogeneity within Medulloblastoma Subgroups

Florence M.G. Cavalli; Marc Remke; Ladislav Rampasek; John Peacock; David Shih; Betty Luu; Livia Garzia; Jonathon Torchia; Carolina Nör; A. Sorana Morrissy; Sameer Agnihotri; Yuan Yao Thompson; Claudia M. Kuzan-Fischer; Hamza Farooq; Keren Isaev; Craig Daniels; Byung Kyu Cho; Seung Ki Kim; Kyu Chang Wang; Ji Yeoun Lee; Wieslawa A. Grajkowska; Marta Perek-Polnik; Alexandre Vasiljevic; Cécile Faure-Conter; Anne Jouvet; Caterina Giannini; Amulya A. Nageswara Rao; Kay Ka Wai Li; Ho Keung Ng; Charles G. Eberhart

While molecular subgrouping has revolutionized medulloblastoma classification, the extent of heterogeneity within subgroups is unknown. Similarity network fusion (SNF) applied to genome-wide DNA methylation and gene expression data across 763 primary samples identifies very homogeneous clusters of patients, supporting the presence of medulloblastoma subtypes. After integration of somatic copy-number alterations, and clinical features specific to each cluster, we identify 12 different subtypes of medulloblastoma. Integrative analysis using SNF further delineates group 3 from group 4 medulloblastoma, which is not as readily apparent through analyses of individual data types. Two clear subtypes of infants with Sonic Hedgehog medulloblastoma with disparate outcomes and biology are identified. Medulloblastoma subtypes identified through integrative clustering have important implications for stratification of future clinical trials.


Oncogene | 2009

Targeted inhibition of the Hedgehog pathway in established malignant glioma xenografts enhances survival

A Sarangi; Juan G. Valadez; Sarah Z. Rush; Ty W. Abel; Reid C. Thompson; Michael K. Cooper

Hedgehog pathway activity has been demonstrated in malignant glioma. However, its role in tumor growth has not been determined. Here we demonstrate that pharmacological inhibition of the Hedgehog pathway in established orthotopic malignant glioma xenografts confers a survival advantage. Pathway inhibition is measured in transplanted human tumor cells and not in host mouse brain. Correspondingly, survival benefit is observed only in tumors with an operational Hedgehog pathway. These data indicate that Hedgehog signaling regulates the growth of select malignant gliomas. We also demonstrate that Hedgehog pathway component and gene target expression segregate to CD133+ tumor initiating cells. Treated mice eventually succumb to disease, thus, targeting the Hedgehog pathway in CD133+ cells produces significant, but incomplete tumor regression. Therefore, our studies suggest that more complete tumor regression may require the inclusion of other therapeutic targets, including CD133− cells.


Genes & Development | 2012

Voltage-gated potassium channel EAG2 controls mitotic entry and tumor growth in medulloblastoma via regulating cell volume dynamics

Xi Huang; Adrian Dubuc; Rintaro Hashizume; Jim Berg; Ye He; Ji Wang; Chin Chiang; Michael K. Cooper; Paul A. Northcott; Michael D. Taylor; Michael Barnes; Tarik Tihan; Justin Chen; Christopher S. Hackett; William A. Weiss; C. David James; David H. Rowitch; Marc A. Shuman; Yuh Nung Jan; Lily Yeh Jan

Medulloblastoma (MB) is the most common pediatric CNS malignancy. We identify EAG2 as an overexpressed potassium channel in MBs across different molecular and histological subgroups. EAG2 knockdown not only impairs MB cell growth in vitro, but also reduces tumor burden in vivo and enhances survival in xenograft studies. Mechanistically, we demonstrate that EAG2 protein is confined intracellularly during interphase but is enriched in the plasma membrane during late G2 phase and mitosis. Disruption of EAG2 expression results in G2 arrest and mitotic catastrophe associated with failure of premitotic cytoplasmic condensation. While the tumor suppression function of EAG2 knockdown is independent of p53 activation, DNA damage checkpoint activation, or changes in the AKT pathway, this defective cell volume control is specifically associated with hyperactivation of the p38 MAPK pathway. Inhibition of the p38 pathway significantly rescues the growth defect and G2 arrest. Strikingly, ectopic membrane expression of EAG2 in cells at interphase results in cell volume reduction and mitotic-like morphology. Our study establishes the functional significance of EAG2 in promoting MB tumor progression via regulating cell volume dynamics, the perturbation of which activates the tumor suppressor p38 MAPK pathway, and provides clinical relevance for targeting this ion channel in human MBs.


Journal of Biological Chemistry | 2014

p75 Neurotrophin Receptor Cleavage by α- and γ-Secretases Is Required for Neurotrophin-mediated Proliferation of Brain Tumor-initiating Cells

Peter A. Forsyth; Niveditha Krishna; Samuel O. Lawn; J. Gerardo Valadez; Xiaotao Qu; David A. Fenstermacher; Michelle Fournier; Lisa Potthast; Prakash Chinnaiyan; Geoffrey T. Gibney; Michele Zeinieh; Philip A. Barker; Bruce D. Carter; Michael K. Cooper; Rajappa Kenchappa

Background: p75 neurotrophin receptor (p75NTR) is an important mediator of invasion of malignant gliomas, but its role in glioma proliferation is unknown. Results: p75NTR mediates proliferation of brain tumor-initiating cells (BTICs) via its cleavage and release of an intracellular domain. Conclusion: p75NTR also regulates proliferation of BTICs. Significance: p75NTR is a potential target for the treatment of malignant gliomas. Malignant gliomas are highly invasive, proliferative, and resistant to treatment. Previously, we have shown that p75 neurotrophin receptor (p75NTR) is a novel mediator of invasion of human glioma cells. However, the role of p75NTR in glioma proliferation is unknown. Here we used brain tumor-initiating cells (BTICs) and show that BTICs express neurotrophin receptors (p75NTR, TrkA, TrkB, and TrkC) and their ligands (NGF, brain-derived neurotrophic factor, and neurotrophin 3) and secrete NGF. Down-regulation of p75NTR significantly decreased proliferation of BTICs. Conversely, exogenouous NGF stimulated BTIC proliferation through α- and γ-secretase-mediated p75NTR cleavage and release of its intracellular domain (ICD). In contrast, overexpression of the p75NTR ICD induced proliferation. Interestingly, inhibition of Trk signaling blocked NGF-stimulated BTIC proliferation and p75NTR cleavage, indicating a role of Trk in p75NTR signaling. Further, blocking p75NTR cleavage attenuated Akt activation in BTICs, suggesting role of Akt in p75NTR-mediated proliferation. We also found that p75NTR, α-secretases, and the four subunits of the γ-secretase enzyme were elevated in glioblastoma multiformes patients. Importantly, the ICD of p75NTR was commonly found in malignant glioma patient specimens, suggesting that the receptor is activated and cleaved in patient tumors. These results suggest that p75NTR proteolysis is required for BTIC proliferation and is a novel potential clinical target.

Collaboration


Dive into the Michael K. Cooper's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chin Chiang

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jussi Taipale

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Reid C. Thompson

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ty W. Abel

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Vandana K. Grover

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Xi Huang

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Adrian Dubuc

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Allie Fu

Vanderbilt University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge