Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael K. Deyholos is active.

Publication


Featured researches published by Michael K. Deyholos.


The Plant Cell | 2001

Gene Expression Profiles during the Initial Phase of Salt Stress in Rice

Shinji Kawasaki; Chris Borchert; Michael K. Deyholos; Hong Wang; Susan M. Brazille; Kiyoshi Kawai; David W. Galbraith; Hans J. Bohnert

Transcript regulation in response to high salinity was investigated for salt-tolerant rice (var Pokkali) with microarrays including 1728 cDNAs from libraries of salt-stressed roots. NaCl at 150 mM reduced photosynthesis to one tenth of the prestress value within minutes. Hybridizations of RNA to microarray slides probed for changes in transcripts from 15 min to 1 week after salt shock. Beginning 15 min after the shock, Pokkali showed upregulation of transcripts. Approximately 10% of the transcripts in Pokkali were significantly upregulated or downregulated within 1 hr of salt stress. The initial differences between control and stressed plants continued for hours but became less pronounced as the plants adapted over time. The interpretation of an adaptive process was supported by the similar analysis of salinity-sensitive rice (var IR29), in which the immediate response exhibited by Pokkali was delayed and later resulted in downregulation of transcription and death. The upregulated functions observed with Pokkali at different time points during stress adaptation changed over time. Increased protein synthesis and protein turnover were observed at early time points, followed by the induction of known stress-responsive transcripts within hours, and the induction of transcripts for defenserelated functions later. After 1 week, the nature of upregulated transcripts (e.g., aquaporins) indicated recovery.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Phylotranscriptomic analysis of the origin and early diversification of land plants

Norman J. Wickett; Siavash Mirarab; Nam Phuong Nguyen; Tandy J. Warnow; Eric J. Carpenter; Naim Matasci; Saravanaraj Ayyampalayam; Michael S. Barker; J. Gordon Burleigh; Matthew A. Gitzendanner; Brad R. Ruhfel; Eric Wafula; Joshua P. Der; Sean W. Graham; Sarah Mathews; Michael Melkonian; Douglas E. Soltis; Pamela S. Soltis; Nicholas W. Miles; Carl J. Rothfels; Lisa Pokorny; A. Jonathan Shaw; Lisa De Gironimo; Dennis W. Stevenson; Barbara Surek; Juan Carlos Villarreal; Béatrice Roure; Hervé Philippe; Claude W. de Pamphilis; Tao Chen

Significance Early branching events in the diversification of land plants and closely related algal lineages remain fundamental and unresolved questions in plant evolutionary biology. Accurate reconstructions of these relationships are critical for testing hypotheses of character evolution: for example, the origins of the embryo, vascular tissue, seeds, and flowers. We investigated relationships among streptophyte algae and land plants using the largest set of nuclear genes that has been applied to this problem to date. Hypothesized relationships were rigorously tested through a series of analyses to assess systematic errors in phylogenetic inference caused by sampling artifacts and model misspecification. Results support some generally accepted phylogenetic hypotheses, while rejecting others. This work provides a new framework for studies of land plant evolution. Reconstructing the origin and evolution of land plants and their algal relatives is a fundamental problem in plant phylogenetics, and is essential for understanding how critical adaptations arose, including the embryo, vascular tissue, seeds, and flowers. Despite advances in molecular systematics, some hypotheses of relationships remain weakly resolved. Inferring deep phylogenies with bouts of rapid diversification can be problematic; however, genome-scale data should significantly increase the number of informative characters for analyses. Recent phylogenomic reconstructions focused on the major divergences of plants have resulted in promising but inconsistent results. One limitation is sparse taxon sampling, likely resulting from the difficulty and cost of data generation. To address this limitation, transcriptome data for 92 streptophyte taxa were generated and analyzed along with 11 published plant genome sequences. Phylogenetic reconstructions were conducted using up to 852 nuclear genes and 1,701,170 aligned sites. Sixty-nine analyses were performed to test the robustness of phylogenetic inferences to permutations of the data matrix or to phylogenetic method, including supermatrix, supertree, and coalescent-based approaches, maximum-likelihood and Bayesian methods, partitioned and unpartitioned analyses, and amino acid versus DNA alignments. Among other results, we find robust support for a sister-group relationship between land plants and one group of streptophyte green algae, the Zygnematophyceae. Strong and robust support for a clade comprising liverworts and mosses is inconsistent with a widely accepted view of early land plant evolution, and suggests that phylogenetic hypotheses used to understand the evolution of fundamental plant traits should be reevaluated.


Plant Molecular Biology | 2009

Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses

Yuanqing Jiang; Michael K. Deyholos

Previous microarray analyses of Arabidopsis roots identified two closely related WRKY transcription factors (WRKY25 and WRKY33) among the transcripts that increased in abundance following treatment with NaCl. Here, we report further characterization of these genes, which we found to be inducible by a variety of abiotic stresses in an SOS-pathway independent manner, although WRKY33 induction was dependent on ABA signaling. Transcripts of both genes were detected in roots and leaves, while specific patterns of enrichment were observed in stems and floral buds for WRKY25 and WRKY33, respectively. We also identified upstream intergenic regions from each gene that were sufficient to confer stress-inducible expression on a reporter gene. However, the stress sensitivity of wrky25 null mutants did not differ from wild-type under any assay condition, while wrky33 null mutants and wrky25wrky33 double mutants showed only a moderate increase in NaCl-sensitivity, suggesting functional redundancy with other transcription factors. Nevertheless, overexpression of WRKY25 or WRKY33 was sufficient to increase Arabidopsis NaCl tolerance, while increasing sensitivity to ABA. Through microarray analyses of relevant genotypes, we identified 31 and 208 potential downstream targets of WRKY25 and WRKY33, respectively, most of which contained a W-box in their upstream regions.


BMC Plant Biology | 2006

Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes

Yuanqing Jiang; Michael K. Deyholos

BackgroundRoots are an attractive system for genomic and post-genomic studies of NaCl responses, due to their primary importance to agriculture, and because of their relative structural and biochemical simplicity. Excellent genomic resources have been established for the study of Arabidopsis roots, however, a comprehensive microarray analysis of the root transcriptome following NaCl exposure is required to further understand plant responses to abiotic stress and facilitate future, systems-based analyses of the underlying regulatory networks.ResultsWe used microarrays of 70-mer oligonucleotide probes representing 23,686 Arabidopsis genes to identify root transcripts that changed in relative abundance following 6 h, 24 h, or 48 h of hydroponic exposure to 150 mM NaCl. Enrichment analysis identified groups of structurally or functionally related genes whose members were statistically over-represented among up- or down-regulated transcripts. Our results are consistent with generally observed stress response themes, and highlight potentially important roles for underappreciated gene families, including: several groups of transporters (e.g. MATE, LeOPT1-like); signalling molecules (e.g. PERK kinases, MLO-like receptors), carbohydrate active enzymes (e.g. XTH18), transcription factors (e.g. members of ZIM, WRKY, NAC), and other proteins (e.g. 4CL-like, COMT-like, LOB-Class 1). We verified the NaCl-inducible expression of selected transcription factors and other genes by qRT-PCR.ConclusionMicorarray profiling of NaCl-treated Arabidopsis roots revealed dynamic changes in transcript abundance for at least 20% of the genome, including hundreds of transcription factors, kinases/phosphatases, hormone-related genes, and effectors of homeostasis, all of which highlight the complexity of this stress response. Our identification of these transcriptional responses, and groups of evolutionarily related genes with either similar or divergent transcriptional responses to stress, will facilitate mapping of regulatory networks and extend our ability to improve salt tolerance in plants.


Plant Journal | 2012

The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads

Zhiwen Wang; Neil Hobson; Leonardo Galindo; Shilin Zhu; Daihu Shi; Joshua McDill; Linfeng Yang; Simon Hawkins; Godfrey Neutelings; Raju Datla; Georgina M. Lambert; David W. Galbraith; Christopher J. Grassa; Armando Geraldes; Quentin C. B. Cronk; Christopher A. Cullis; Prasanta K. Dash; Polumetla Ananda Kumar; Sylvie Cloutier; Andrew G. Sharpe; Gane Ka-Shu Wong; Jun Wang; Michael K. Deyholos

Flax (Linum usitatissimum) is an ancient crop that is widely cultivated as a source of fiber, oil and medicinally relevant compounds. To accelerate crop improvement, we performed whole-genome shotgun sequencing of the nuclear genome of flax. Seven paired-end libraries ranging in size from 300 bp to 10 kb were sequenced using an Illumina genome analyzer. A de novo assembly, comprised exclusively of deep-coverage (approximately 94× raw, approximately 69× filtered) short-sequence reads (44-100 bp), produced a set of scaffolds with N(50) =694 kb, including contigs with N(50)=20.1 kb. The contig assembly contained 302 Mb of non-redundant sequence representing an estimated 81% genome coverage. Up to 96% of published flax ESTs aligned to the whole-genome shotgun scaffolds. However, comparisons with independently sequenced BACs and fosmids showed some mis-assembly of regions at the genome scale. A total of 43384 protein-coding genes were predicted in the whole-genome shotgun assembly, and up to 93% of published flax ESTs, and 86% of A. thaliana genes aligned to these predicted genes, indicating excellent coverage and accuracy at the gene level. Analysis of the synonymous substitution rates (K(s) ) observed within duplicate gene pairs was consistent with a recent (5-9 MYA) whole-genome duplication in flax. Within the predicted proteome, we observed enrichment of many conserved domains (Pfam-A) that may contribute to the unique properties of this crop, including agglutinin proteins. Together these results show that de novo assembly, based solely on whole-genome shotgun short-sequence reads, is an efficient means of obtaining nearly complete genome sequence information for some plant species.


GigaScience | 2014

Data access for the 1,000 Plants (1KP) project

Naim Matasci; Ling Hong Hung; Zhixiang Yan; Eric J. Carpenter; Norman J. Wickett; Siavash Mirarab; Nam Phuong Nguyen; Tandy J. Warnow; Saravanaraj Ayyampalayam; Michael S. Barker; J. G. Burleigh; Matthew A. Gitzendanner; Eric Wafula; Joshua P. Der; Claude W. dePamphilis; Béatrice Roure; Hervé Philippe; Brad R. Ruhfel; Nicholas W. Miles; Sean W. Graham; Sarah Mathews; Barbara Surek; Michael Melkonian; Douglas E. Soltis; Pamela S. Soltis; Carl J. Rothfels; Lisa Pokorny; Jonathan Shaw; Lisa DeGironimo; Dennis W. Stevenson

The 1,000 plants (1KP) project is an international multi-disciplinary consortium that has generated transcriptome data from over 1,000 plant species, with exemplars for all of the major lineages across the Viridiplantae (green plants) clade. Here, we describe how to access the data used in a phylogenomics analysis of the first 85 species, and how to visualize our gene and species trees. Users can develop computational pipelines to analyse these data, in conjunction with data of their own that they can upload. Computationally estimated protein-protein interactions and biochemical pathways can be visualized at another site. Finally, we comment on our future plans and how they fit within this scalable system for the dissemination, visualization, and analysis of large multi-species data sets.


Plant Physiology and Biochemistry | 2001

A genomics approach towards salt stress tolerance

Hans J. Bohnert; Patricia Ayoubi; Chris Borchert; Ray A. Bressan; Robert L. Burnap; John C. Cushman; Mary Ann Cushman; Michael K. Deyholos; Robert E. Fischer; David W. Galbraith; Paul M. Hasegawa; Matt Jenks; Shinji Kawasaki; Hisashi Koiwa; Shin Koreeda; Byeong-ha Lee; Chris B. Michalowski; Eduardo A. Misawa; Mika Nomura; Neslihan Z. Ozturk; Bradley L. Postier; Rolf A. Prade; Chun-Peng Song; Yuko Tanaka; Hong Wang; Jian-Kang Zhu

Abiotic stresses reduce plant productivity. We focus on gene expression analysis following exposure of plants to high salinity, using salt-shock experiments to mimic stresses that affect hydration and ion homeostasis. The approach includes parallel molecular and genetic experimentation. Comparative analysis is employed to identify functional isoforms and genetic orthologs of stress-regulated genes common to cyanobacteria, fungi, algae and higher plants. We analyze global gene expression profiles monitored under salt stress conditions through abundance profiles in several species: in the cyanobacterium SynechocystisPCC6803, in unicellular (Saccharomyces cerevisiae) and multicellular (Aspergillus nidulans) fungi, the eukaryotic alga Dunaliella salina, the halophytic land plant Mesembryanthemum crystallinum , the glycophytic Oryza sativa and the genetic model Arabidopsis thaliana. Expanding the gene count, stress brings about a significant increase of transcripts for which no function is known. Also, we generate insertional mutants that affect stress tolerance in several organisms. More than 400 000 T-DNA tagged lines of A. thaliana have been generated, and lines with altered salt stress responses have been obtained. Integration of these approaches defines stress phenotypes, catalogs of transcripts and a global representation of gene expression induced by salt stress. Determining evolutionary relationships among these genes, mutants and transcription profiles will provide categories and gene clusters, which reveal ubiquitous cellular aspects of salinity tolerance and unique solutions in multicellular species.


Genome Biology | 2012

A genome triplication associated with early diversification of the core eudicots.

Yuannian Jiao; Jim Leebens-Mack; Saravanaraj Ayyampalayam; John E. Bowers; Michael R. McKain; Joel R. McNeal; Megan Rolf; Daniel R. Ruzicka; Eric Wafula; Norman J. Wickett; Xiaolei Wu; Yong Zhang; Jun Wang; Yeting Zhang; Eric J. Carpenter; Michael K. Deyholos; Toni M. Kutchan; André S. Chanderbali; Pamela S. Soltis; Dennis W. Stevenson; Richard McCombie; J. C. Pires; Gane Ka-Shu Wong; Douglas E. Soltis; Claude W. dePamphilis

BackgroundAlthough it is agreed that a major polyploidy event, gamma, occurred within the eudicots, the phylogenetic placement of the event remains unclear.ResultsTo determine when this polyploidization occurred relative to speciation events in angiosperm history, we employed a phylogenomic approach to investigate the timing of gene set duplications located on syntenic gamma blocks. We populated 769 putative gene families with large sets of homologs obtained from public transcriptomes of basal angiosperms, magnoliids, asterids, and more than 91.8 gigabases of new next-generation transcriptome sequences of non-grass monocots and basal eudicots. The overwhelming majority (95%) of well-resolved gamma duplications was placed before the separation of rosids and asterids and after the split of monocots and eudicots, providing strong evidence that the gamma polyploidy event occurred early in eudicot evolution. Further, the majority of gene duplications was placed after the divergence of the Ranunculales and core eudicots, indicating that the gamma appears to be restricted to core eudicots. Molecular dating estimates indicate that the duplication events were intensely concentrated around 117 million years ago.ConclusionsThe rapid radiation of core eudicot lineages that gave rise to nearly 75% of angiosperm species appears to have occurred coincidentally or shortly following the gamma triplication event. Reconciliation of gene trees with a species phylogeny can elucidate the timing of major events in genome evolution, even when genome sequences are only available for a subset of species represented in the gene trees. Comprehensive transcriptome datasets are valuable complements to genome sequences for high-resolution phylogenomic analysis.


PLOS ONE | 2012

Evaluating methods for isolating total RNA and predicting the success of sequencing phylogenetically diverse plant transcriptomes

Marc T. J. Johnson; Eric J. Carpenter; Zhijian Tian; R. Bruskiewich; Jason N. Burris; C. T. Carrigan; Mark W. Chase; N. D. Clarke; Sarah Covshoff; Claude W. dePamphilis; Patrick P. Edger; F. Goh; Sean W. Graham; Stephan Greiner; Julian M. Hibberd; Ingrid E. Jordon-Thaden; Toni M. Kutchan; Jim Leebens-Mack; Michael Melkonian; Nicholas W. Miles; H. Myburg; Jordan Patterson; J. C. Pires; Paula E. Ralph; Megan Rolf; Rowan F. Sage; Douglas E. Soltis; Pamela S. Soltis; Dennis W. Stevenson; Charles Neal Stewart

Next-generation sequencing plays a central role in the characterization and quantification of transcriptomes. Although numerous metrics are purported to quantify the quality of RNA, there have been no large-scale empirical evaluations of the major determinants of sequencing success. We used a combination of existing and newly developed methods to isolate total RNA from 1115 samples from 695 plant species in 324 families, which represents >900 million years of phylogenetic diversity from green algae through flowering plants, including many plants of economic importance. We then sequenced 629 of these samples on Illumina GAIIx and HiSeq platforms and performed a large comparative analysis to identify predictors of RNA quality and the diversity of putative genes (scaffolds) expressed within samples. Tissue types (e.g., leaf vs. flower) varied in RNA quality, sequencing depth and the number of scaffolds. Tissue age also influenced RNA quality but not the number of scaffolds ≥1000 bp. Overall, 36% of the variation in the number of scaffolds was explained by metrics of RNA integrity (RIN score), RNA purity (OD 260/230), sequencing platform (GAIIx vs HiSeq) and the amount of total RNA used for sequencing. However, our results show that the most commonly used measures of RNA quality (e.g., RIN) are weak predictors of the number of scaffolds because Illumina sequencing is robust to variation in RNA quality. These results provide novel insight into the methods that are most important in isolating high quality RNA for sequencing and assembling plant transcriptomes. The methods and recommendations provided here could increase the efficiency and decrease the cost of RNA sequencing for individual labs and genome centers.


Plant Cell and Environment | 2010

Making the most of drought and salinity transcriptomics

Michael K. Deyholos

More than 100 different studies of plant transcriptomic responses to salinity or drought-related stress have now been published. Most of these use microarrays or related high-throughput profiling technologies. This compels us to ask three questions in review: (1) what has transcriptomics contributed to our understanding of stress physiology; (2) what limits the ability of transcriptomics to contribute to increases in stress tolerance; and (3) given these limits, what are the most appropriate uses of transcriptomics? We conclude that although microarrays are now a mature technology that accurately describes the transcriptome, the consistently low correlation between transcript abundance and other measures of gene expression imposes an inherent limitation that cannot be ignored. Further limitations on the relevance of transcriptomics arise in some cases from experimental practices related to the treatment regimen and the selection of tissue or germplasm. Nevertheless, there is good evidence to support the continued use of transcriptomics, especially emerging techniques such as RNA-Seq, as a screening tool for candidate gene discovery. Microarrays can also be valuable in analysing the transcriptome per se (e.g. when describing the phenotype of a transcription factor mutant or discovering non-coding RNA species), and when integrated with other types of data including metabolomic analyses.

Collaboration


Dive into the Michael K. Deyholos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sean W. Graham

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge