Michael Karbiener
Graz University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael Karbiener.
RNA Biology | 2011
Michael Karbiener; Claudia Neuhold; Peter Opriessnig; Andreas Prokesch; Juliane G. Bogner-Strauss; Marcel Scheideler
Obesity is characterized by excessive adipose tissue mass and associated with type 2 diabetes and cardiovascular diseases. To fight obesity and its sequels, elucidating molecular events that govern adipocyte differentiation and function is of key importance. MicroRNAs (miRNAs) are a novel class of non-coding, regulatory RNAs that have been shown to regulate crucial cellular processes, including differentiation. Several studies have already assigned miRNAs to distinct functions in murine adipocyte differentiation but only a few studies did so for humans. Here, we investigated the function of miR-30c in human adipogenesis. miR-30c expression was increased during adipogenesis of human multipotent adipose-derived stem (hMADS) cells, and miR-30c overexpression enforced adipocyte marker gene induction and triglyceride accumulation. miRNA target prediction revealed two putative direct targets of miR-30c, PAI-1 (SERPINE1) and ALK2 (ACVR1, ACTRI), both inversely regulated to miR-30c during adipogenesis and responsive to miR-30c overexpression. Luciferase reporter assays confirmed PAI-1 and ALK2 as direct miR-30c targets. Moreover, reciprocal expression between miR-30c and PAI-1 could also be demonstrated in white adipose tissue of obesity mouse models, suggesting a potential physiological role of miR-30c for PAI-1 regulation in the obese state. Validating PAI-1 and ALK-2 as miR-30c mediators in adipogenesis revealed that not single silencing of PAI-1 or ALK2, but only co-silencing of both phenocopied the pro-adipogenic miR-30c effect. Thus, miR-30c can target two, so far not interconnected genes in distinct pathways, supporting the idea that miRNAs might coordinate larger regulatory networks than previously anticipated.
Stem Cells | 2014
Michael Karbiener; Didier F. Pisani; Andrea Frontini; Lisa M. Oberreiter; Eleonore Lang; Alexandros Vegiopoulos; Karin Mössenböck; Gerwin A. Bernhardt; Torsten Mayr; Florian Hildner; Johannes Grillari; Gérard Ailhaud; Stephan Herzig; Saverio Cinti; Ez-Zoubir Amri; Marcel Scheideler
Adipose tissue contains thermogenic adipocytes (i.e., brown and brite/beige) that oxidize nutrients at exceptionally high rates via nonshivering thermogenesis. Its recent discovery in adult humans has opened up new avenues to fight obesity and related disorders such as diabetes. Here, we identified miR‐26a and ‐26b as key regulators of human white and brite adipocyte differentiation. Both microRNAs are upregulated in early adipogenesis, and their inhibition prevented lipid accumulation while their overexpression accelerated it. Intriguingly, miR‐26a significantly induced pathways related to energy dissipation, shifted mitochondrial morphology toward that seen in brown adipocytes, and promoted uncoupled respiration by markedly increasing the hallmark protein of brown fat, uncoupling protein 1. By combining in silico target prediction, transcriptomics, and an RNA interference screen, we identified the sheddase ADAM metallopeptidase domain 17 (ADAM17) as a direct target of miR‐26 that mediated the observed effects on white and brite adipogenesis. These results point to a novel, critical role for the miR‐26 family and its downstream effector ADAM17 in human adipocyte differentiation by promoting characteristics of energy‐dissipating thermogenic adipocytes. Stem Cells 2014;32:1578–1590
Tissue Engineering Part A | 2009
Susanne Wolbank; Guido Stadler; Anja Peterbauer; Astrid Gillich; Michael Karbiener; Berthold Streubel; Matthias Wieser; Hermann Katinger; Martijn van Griensven; Heinz Redl; Christian Gabriel; Johannes Grillari; Regina Grillari-Voglauer
Cell banking of mesenchymal stem cells (SCs) from various human tissues has significantly increased the feasibility of SC-based therapies. Sources such as adipose tissue and amnion offer outstanding possibilities for allogeneic transplantation due to their high differentiation potential and their ability to modulate immune reaction. Limitations, however, concern the reduced replicative potential as a result of progressive telomere erosion, which hampers scaleable production and long-term analysis of these cells. Here we report the establishment and characterization of two human amnion-derived and two human adipose-derived SC lines immortalized by ectopic expression of the catalytic subunit of human telomerase (hTERT). hTERT overexpression resulted in continuously growing SC lines that were largely unaltered concerning surface marker profile, morphology, karyotype, and immunosuppressive capacity with similar or enhanced differentiation potential for up to 87 population doublings. While all generated lines showed equal immunomodulation compared to the parental cells, one of the amnion-derived immortalized lines resulted in significantly increased immunogenicity. Although telomerase proves as important tool for immortalizing cells, our data emphasize the need for careful and standardized characterization of each individual cell population for cell banks.
British Journal of Cancer | 2014
M Pichler; Anna Lena Ress; Elke Winter; Verena Stiegelbauer; Michael Karbiener; Daniela Schwarzenbacher; Marcel Scheideler; Cristina Ivan; Stephan Jahn; Tobias Kiesslich; Armin Gerger; Thomas Bauernhofer; George A. Calin; Gerald Hoefler
Background:MicroRNAs (miRNAs) regulate the biological properties of colorectal cancer (CRC) cells and might serve as potential prognostic factors and therapeutic targets. In this study, we therefore globally profiled miRNAs associated with E-cadherin expression in CRC cells in an attempt to identify miRNAs that are associated with aggressive clinical course in CRC patients.Methods:Two CRC cell lines (Caco-2 and HRT-18) with different E-cadherin expression pattern were profiled for differences in abundance for more than 1000 human miRNAs using microarray technology. One of the most differentially expressed miRNAs, miR-200a was evaluated for its prognostic role in a cohort of 111 patients and independently validated in 217 patients of the Cancer Genome Atlas data set. To further characterise the biological role of miR-200a expression in CRC, in vitro miR-200a inhibition and overexpression were performed and the effects on cellular growth, apoptosis and epithelial–mesenchymal transition (EMT)-related gene expression were explored.Results:In situ hybridisation specifically localised miR-200a in CRC cells. In both cohorts, a low miR-200a expression was associated with poor survival (P<0.05). Multivariate Cox regression analysis identified low levels of miR-200a expression as an independent prognostic factor with respect to cancer-specific survival (HR=2.04, CI=1.28–3.25, P<0.002). Gain and loss of function assays for miR-200a in vitro led to a significantly differential and converse expression of EMT-related genes (P<0.001.) A low expression of miR-200a was also observed in cancer stem cell-enriched spheroid growth conditions (P<0.05).Conclusions:In conclusion, our data suggest that low miR-200a expression is associated with poor prognosis in CRC patients. MiR-200a has a regulatory effect on EMT and is associated with cancer stem cell properties in CRC.
Journal of Photochemistry and Photobiology B-biology | 2013
Doris Bach; Julia Fuereder; Michael Karbiener; Marcel Scheideler; Anna Lena Ress; Daniel Neureiter; Ralf Kemmerling; Otto Dietze; Markus Wiederstein; Frieder Berr; Kristjan Plaetzer; Tobias Kiesslich; Martin Pichler
Photodynamic therapy (PDT) is a local tumour treatment accepted for a number of indications. PDT operates via the cellular stress response through the production of reactive oxygen species and subsequent cellular damage, resulting in cell death. Although PDT-induced signalling and cytotoxicity mechanisms have been investigated, the effect of PDT on microRNA (miRNA) expression is largely unknown. Therefore, we conducted a comprehensive microarray-based analysis of the miRNome of human epidermoid carcinoma cells (A431) following in vitro photodynamic treatment using polyvinylpyrrolidone hypericin (PVPH) as a photosensitiser and nearly homogeneous apoptosis-inducing conditions. Using microarray analysis we found eight miRNAs to be significantly differentially expressed 5h post treatment compared with the baseline levels and three miRNAs with more than 2-fold differential expression that could be detected in 1 or 2 biological replicates. The verification of these results by quantitative RT-PCR including a detailed time-course revealed an up to 15-fold transient over-expression of miR-634, miR-1246, miR-1290 and miR-487b compared with the basal level. For these miRNAs, in silico mRNA target prediction yielded numerous target transcripts involved in the regulation of cell stress, apoptosis, cell adherence and proliferation. This study provides the first comprehensive miRNome analysis after PDT treatment and may help to develop novel miRNA-based therapeutic approaches to further increase the efficiency of PDT.
Molecular metabolism | 2016
Maude Giroud; Didier F. Pisani; Michael Karbiener; Valentin Barquissau; Rayane A. Ghandour; Daniel Tews; Pamela Fischer-Posovszky; Jean Claude Chambard; Uwe Knippschild; Tarja Niemi; Markku Taittonen; Pirjo Nuutila; Martin Wabitsch; Stephan Herzig; Kirsi A. Virtanen; Dominique Langin; Marcel Scheideler; Ez-Zoubir Amri
Objective In rodents and humans, besides brown adipose tissue (BAT), islands of thermogenic adipocytes, termed “brite” (brown-in-white) or beige adipocytes, emerge within white adipose tissue (WAT) after cold exposure or β3-adrenoceptor stimulation, which may protect from obesity and associated diseases. microRNAs are novel modulators of adipose tissue development and function. The purpose of this work was to characterize the role of microRNAs in the control of brite adipocyte formation. Methods/Results Using human multipotent adipose derived stem cells, we identified miR-125b-5p as downregulated upon brite adipocyte formation. In humans and rodents, miR-125b-5p expression was lower in BAT than in WAT. In vitro, overexpression and knockdown of miR-125b-5p decreased and increased mitochondrial biogenesis, respectively. In vivo, miR-125b-5p levels were downregulated in subcutaneous WAT and interscapular BAT upon β3-adrenergic receptor stimulation. Injections of an miR-125b-5p mimic and LNA inhibitor directly into WAT inhibited and increased β3-adrenoceptor-mediated induction of UCP1, respectively, and mitochondrial brite adipocyte marker expression and mitochondriogenesis. Conclusion Collectively, our results demonstrate that miR-125b-5p plays an important role in the repression of brite adipocyte function by modulating oxygen consumption and mitochondrial gene expression.
Applied Microbiology and Biotechnology | 2014
Andreas Maccani; Matthias Hackl; Christian Leitner; Willibald Steinfellner; Alexandra B. Graf; Nadine E. Tatto; Michael Karbiener; Marcel Scheideler; Johannes Grillari; Diethard Mattanovich; Renate Kunert; Nicole Borth; Reingard Grabherr; Wolfgang Ernst
MicroRNAs are short non-coding RNAs that play an important role in the regulation of gene expression. Hence, microRNAs are considered as potential targets for engineering of Chinese hamster ovary (CHO) cells to improve recombinant protein production. Here, we analyzed and compared the microRNA expression patterns of high, low, and non-producing recombinant CHO cell lines expressing two structurally different model proteins in order to identify microRNAs that are involved in heterologous protein synthesis and secretion and thus might be promising targets for cell engineering to increase productivity. To generate reproducible and comparable data, the cells were cultivated in a bioreactor under steady-state conditions. Global microRNA expression analysis showed that mature microRNAs were predominantly upregulated in the producing cell lines compared to the non-producer. Several microRNAs were significantly differentially expressed between high and low producers, but none of them commonly for both model proteins. The identification of target messenger RNAs (mRNAs) is essential to understand the biological function of microRNAs. Therefore, we negatively correlated microRNA and global mRNA expression data and combined them with computationally predicted and experimentally validated targets. However, statistical analysis of the identified microRNA-mRNA interactions indicated a considerable false positive rate. Our results and the comparison to published data suggest that the reaction of CHO cells to the heterologous protein expression is strongly product- and/or clone-specific. In addition, this study highlights the urgent need for reliable CHO-specific microRNA target prediction tools and experimentally validated target databases in order to facilitate functional analysis of high-throughput microRNA expression data in CHO cells.
Computational and structural biotechnology journal | 2014
Michael Karbiener; Marcel Scheideler
Current anti-obesity strategies are aiming at restricting energy uptake, but still, obesity treatment is far from being satisfactory. The discovery of active brown adipose tissue (BAT) in adult humans currently opens new avenues to combat obesity and follow-up complications as it tackles the other site of the energy balance: energy expenditure via non-shivering thermogenesis. This process of energy dissipation in the adipose tissue is tightly controlled, and the elucidation of its regulatory network is a key plank for therapeutic applications. MicroRNAs (miRNAs) belong to a novel class of regulatory determinants which are small non-coding RNAs with vital roles in regulating gene expression that also play a role in many human diseases. In this review we summarize miRNAs which have been shown to govern thermogenic, i.e. brite or brown, adipocyte recruitment and physiology. Notably, most miRNAs in this context have so far been characterized solely in mice, revealing a great demand for more human studies. As in the context of other diseases, RNA-based therapeutics have meanwhile entered clinical trials, further exploring the functions of miRNAs in brown and white adipose tissues could result in novel therapeutic approaches to treat obesity and its follow-up complications.
PLOS ONE | 2014
Sabrina Rohringer; Wolfgang Holnthoner; Matthias Hackl; Anna M. Weihs; Dominik Rünzler; Susanna Skalicky; Michael Karbiener; Marcel Scheideler; Johannes Pröll; Christian Gabriel; Bernhard Schweighofer; Marion Gröger; Andreas Spittler; Johannes Grillari; Heinz Redl
Extracorporeal shockwave treatment was shown to improve orthopaedic diseases and wound healing and to stimulate lymphangiogenesis in vivo. The aim of this study was to investigate in vitro shockwave treatment (IVSWT) effects on lymphatic endothelial cell (LEC) behavior and lymphangiogenesis. We analyzed migration, proliferation, vascular tube forming capability and marker expression changes of LECs after IVSWT compared with HUVECs. Finally, transcriptome- and miRNA analyses were conducted to gain deeper insight into the IVSWT-induced molecular mechanisms in LECs. The results indicate that IVSWT-mediated proliferation changes of LECs are highly energy flux density-dependent and LEC 2D as well as 3D migration was enhanced through IVSWT. IVSWT suppressed HUVEC 3D migration but enhanced vasculogenesis. Furthermore, we identified podoplaninhigh and podoplaninlow cell subpopulations, whose ratios changed upon IVSWT treatment. Transcriptome- and miRNA analyses on these populations showed differences in genes specific for signaling and vascular tissue. Our findings help to understand the cellular and molecular mechanisms underlying shockwave-induced lymphangiogenesis in vivo.
International Journal of Molecular Sciences | 2014
Michael Karbiener; Christina Glantschnig; Marcel Scheideler
MicroRNAs (miRNAs) are endogenous small non-coding RNAs of ~23 nucleotides in length that form up a novel class of regulatory determinants, with a large set of target mRNAs postulated for every single miRNA. Thousands of miRNAs have been discovered so far, with hundreds of them shown to govern biological processes with impact on disease. However, very little is known about how they specifically interfere with biological pathways and disease mechanisms. To investigate this interaction, the hunt for direct miRNA targets that mediate the miRNA effects—the “needle in the haystack”—is an essential step. In this review we provide a comprehensive workflow of successfully applied methods starting from the identification of putative miRNA-target pairs, followed by validation of direct miRNA–mRNA interactions, and finally presenting methods that dissect the impact of particular miRNA-target pairs on a biological process or disease. This guide allows the way to be paved for obtaining biologically meaningful miRNA targets.