Michael Kirwan
Queen Mary University of London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael Kirwan.
Blood | 2008
Amanda J. Walne; Tom Vulliamy; Richard Beswick; Michael Kirwan; Inderjeet Dokal
Dyskeratosis congenita (DC) is a multisystem bone marrow failure syndrome characterized by a triad of mucocutaneous abnormalities and a predisposition to cancer. The genetic basis of DC remains unknown in more than 60% of patients. Mutations have been identified in components of the telomerase complex (dyskerin, TERC, TERT, NOP10, and NHP2), and recently in one component of the shelterin complex TIN2 (gene TINF2). To establish the role of TINF2 mutations, we screened DNA from 175 uncharacterised patients with DC as well as 244 patients with other bone marrow failure disorders. Heterozygous coding mutations were found in 33 of 175 previously uncharacterized DC index patients and 3 of 244 other patients. A total of 21 of the mutations affected amino acid 282, changing arginine to histidine (n = 14) or cysteine (n = 7). A total of 32 of 33 patients with DC with TINF2 mutations have severe disease, with most developing aplastic anaemia by the age of 10 years. Telomere lengths in patients with TINF2 mutations were the shortest compared with other DC subtypes, but TERC levels were normal. In this large series, TINF2 mutations account for approximately 11% of all DC, but they do not play a significant role in patients with related disorders. This study emphasises the role of defective telomere maintenance on human disease.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Tom Vulliamy; Richard Beswick; Michael Kirwan; Anna Marrone; Amanda J. Walne; Inderjeet Dokal
Dyskeratosis congenita is a premature aging syndrome characterized by muco-cutaneous features and a range of other abnormalities, including early greying, dental loss, osteoporosis, and malignancy. Dyskeratosis congenita cells age prematurely and have very short telomeres. Patients have mutations in genes that encode components of the telomerase complex (dyskerin, TERC, TERT, and NOP10), important in the maintenance of telomeres. Many dyskeratosis congenita patients remain uncharacterized. Here, we describe the analysis of two other proteins, NHP2 and GAR1, that together with dyskerin and NOP10 are key components of telomerase and small nucleolar ribonucleoprotein (snoRNP) complexes. We have identified previously uncharacterized NHP2 mutations that can cause autosomal recessive dyskeratosis congenita but have not found any GAR1 mutations. Patients with NHP2 mutations, in common with patients bearing dyskerin and NOP10 mutations had short telomeres and low TERC levels. SiRNA-mediated knockdown of NHP2 in human cells led to low TERC levels, but this reduction was not observed after GAR1 knockdown. These findings suggest that, in human cells, GAR1 has a different impact on the accumulation of TERC compared with dyskerin, NOP10, and NHP2. Most of the mutations so far identified in patients with classical dyskeratosis congenita impact either directly or indirectly on the stability of RNAs. In keeping with this effect, patients with dyskerin, NOP10, and now NHP2 mutations have all been shown to have low levels of telomerase RNA in their peripheral blood, providing direct evidence of their role in telomere maintenance in humans.
American Journal of Human Genetics | 2013
Amanda J. Walne; Tom Vulliamy; Michael Kirwan; Vincent Plagnol; Inderjeet Dokal
Dyskeratosis congenita (DC) and its phenotypically severe variant, Hoyeraal-Hreidarsson syndrome (HHS), are multisystem bone-marrow-failure syndromes in which the principal pathology is defective telomere maintenance. The genetic basis of many cases of DC and HHS remains unknown. Using whole-exome sequencing, we identified biallelic mutations in RTEL1, encoding a helicase essential for telomere maintenance and regulation of homologous recombination, in an individual with familial HHS. Additional screening of RTEL1 identified biallelic mutations in 6/23 index cases with HHS but none in 102 DC or DC-like cases. All 11 mutations in ten HHS individuals from seven families segregated in an autosomal-recessive manner, and telomere lengths were significantly shorter in cases than in controls (p = 0.0003). This group had significantly higher levels of telomeric circles, produced as a consequence of incorrect processing of telomere ends, than did controls (p = 0.0148). These biallelic RTEL1 mutations are responsible for a major subgroup (∼29%) of HHS. Our studies show that cells harboring these mutations have significant defects in telomere maintenance, but not in homologous recombination, and that incorrect resolution of T-loops is a mechanism for telomere shortening and disease causation in humans. They also demonstrate the severe multisystem consequences of its dysfunction.
Biochimica et Biophysica Acta | 2009
Michael Kirwan; Inderjeet Dokal
Dyskeratosis congenita (DC) is a multi-system disorder which in its classical form is characterised by abnormalities of the skin, nails and mucous membranes. In approximately 80% of cases, it is associated with bone marrow dysfunction. A variety of other abnormalities (including bone, brain, cancer, dental, eye, gastrointestinal, immunological and lung) have also been reported. Although first described almost a century ago it is the last 10 years, following the identification of the first DC gene (DKC1) in 1998, in which there has been rapid progress in its understanding. Six genes have been identified, defects in which cause different genetic subtypes (X-linked recessive, autosomal dominant, autosomal recessive) of DC. The products of these genes encode components that are critical for telomere maintenance; either because they are core constituents of telomerase (dyskerin, TERC, TERT, NOP10 and NHP2) or are part of the shelterin complex that protects the telomeric end (TIN2). These advances have also highlighted the connection between the more “cryptic/atypical” forms of the disease including aplastic anaemia and idiopathic pulmonary fibrosis. Equally, studies on this disease have demonstrated the critical importance of telomeres in human cells (including stem cells) and the severe consequences of their dysfunction. In this context DC and related diseases can now be regarded as disorders of “telomere and stem cell dysfunction”.
Human Mutation | 2009
Michael Kirwan; Tom Vulliamy; Anna Marrone; Amanda J. Walne; Richard Beswick; Peter Hillmen; Richard Kelly; Andrew Stewart; David T. Bowen; Stefan Schönland; Annika M. Whittle; Anthony McVerry; Maria Gilleece; Inderjeet Dokal
The primary pathology in many cases of myelodysplasia (MDS) and acute myeloid leukemia (AML) remains unknown. In some cases, two or more affected members have been identified in the same family. To date, mutations in two genes have been directly implicated: the hematopoietic transcription factors RUNX1 (runt‐related transcription factor 1) and CEBPA (CCATT‐box enhancer binding protein α). However, there are also other familial cases of MDS/AML where the genetic basis remains unknown. Both MDS, and to a lesser extent AML, have been observed in cases of the bone marrow failure syndrome dyskeratosis congenita, in which telomerase mutations have been identified. Recently, an increased incidence of telomerase reverse transcriptase mutations has been reported in a series of de novo AML. We have now identified novel mutations in the telomerase RNA (TERC) or telomerase reverse transcriptase component (TERT) within 4 of 20 families presenting with familial MDS/AML. Functional analysis has demonstrated that all mutations adversely impact on telomerase activity in vitro, and affected individuals have short telomeres. These families, in conjunction with a review of previously published cases, help to further define the pathological role of telomerase mutations in MDS/AML and have implications for the biology, treatment and screening regimen of de novo cases. Hum Mutat 30:1–7, 2009.
Human Molecular Genetics | 2010
Amanda J. Walne; Tom Vulliamy; Richard Beswick; Michael Kirwan; Inderjeet Dokal
Dyskeratosis congenita (DC) is an inherited poikiloderma which in addition to the skin abnormalities is typically associated with nail dystrophy, leucoplakia, bone marrow failure, cancer predisposition and other features. Approximately 50% of DC patients remain genetically uncharacterized. All the DC genes identified to date are important in telomere maintenance. To determine the genetic basis of the remaining cases of DC, we undertook linkage analysis in 20 families and identified a common candidate gene region on chromosome 16 in a subset of these. This region included the C16orf57 gene recently identified to be mutated in poikiloderma with neutropenia (PN), an inherited poikiloderma displaying significant clinical overlap with DC. Analysis of the C16orf57 gene in our uncharacterized DC patients revealed homozygous mutations in 6 of 132 families. In addition, three of six families previously classified as Rothmund–Thomson syndrome (RTS—a poikiloderma that is sometimes confused with PN) were also found to have homozygous C16orf57 mutations. Given the role of the previous DC genes in telomere maintenance, telomere length was analysed in these patients and found to be comparable to age-matched controls. These findings suggest that mutations in C16orf57 unify a distinct set of families which clinically can be categorized as DC, PN or RTS. This study also highlights the multi-system nature (wider than just poikiloderma and neutropenia) of the clinical features of affected individuals (and therefore house-keeping function of C16orf57), a possible role for C16orf57 in apoptosis, as well as a distinct difference from previously characterized DC patients because telomere length was normal.
Haematologica | 2013
Amanda J. Walne; Tanya Bhagat; Michael Kirwan; Cyril Gitiaux; Isabelle Desguerre; Norma Leonard; Elena Nogales; Tom Vulliamy; Inderjeet Dokal
Dyskeratosis congenita and its variants have overlapping phenotypes with many disorders including Coats plus, and their underlying pathology is thought to be one of defective telomere maintenance. Recently, biallelic CTC1 mutations have been described in patients with syndromes overlapping Coats plus. CTC1, STN1 and TEN1 are part of the telomere-capping complex involved in maintaining telomeric structural integrity. Based on phenotypic overlap we screened 73 genetically uncharacterized patients with dyskeratosis congenita and related bone marrow failure syndromes for mutations in this complex. Biallelic CTC1 mutations were identified in 6 patients but none in either STN1 or TEN1. We have expanded the phenotypic spectrum associated with CTC1 mutations and report that intracranial and retinal abnormalities are not a defining feature, as well as showing that the effect of these mutations on telomere length is variable. The study also demonstrates the lack of disease-causing mutations in other components of the telomere-capping complex.
PLOS ONE | 2011
Tom Vulliamy; Michael Kirwan; Richard Beswick; Upal Hossain; Charlotte Baqai; Anna Ratcliffe; Judith Marsh; Amanda J. Walne; Inderjeet Dokal
The bone marrow failure syndrome dyskeratosis congenita (DC) has been considered to be a disorder of telomere maintenance in which disease features arise due to accelerated shortening of telomeres. By screening core components of the telomerase and shelterin complexes in patients with DC and related bone marrow failure syndromes we have identified 24 novel mutations: 11 in the RNA component of telomerase (TERC), 8 in the reverse transcriptase component (TERT), 4 in dyskerin (DKC1) and 1 in TRF1-interacting nuclear factor 2 (TINF2). This has prompted us to review these genetic subtypes in terms of telomere length, telomerase activity and clinical presentation among 194 genetically characterised index cases recruited onto the registry in London. While those with DKC1 and TINF2 mutations present at a younger age and have more disease features than those with TERC or TERT mutations, there is no difference in telomere length between these groups. There is no difference in the age of onset and numbers of disease features seen in those with TERC and TERT mutations despite the fact that the latter show higher levels of telomerase activity in vitro. The incidence of aplastic anaemia is greater in patients with TERC or TINF2 mutations compared to patients with DKC1 mutations, and cancer incidence is highest in patients with TERC mutations. These data are the first to provide robust comparisons between different genetic subtypes of telomerase and shelterin mutations (the “telomereopathies”) and clearly demonstrate that disease severity is not explained by telomere length alone.
American Journal of Human Genetics | 2012
Michael Kirwan; Amanda J. Walne; Vincent Plagnol; Mark Velangi; Aloysius Ho; Upal Hossain; Tom Vulliamy; Inderjeet Dokal
Aplastic anemia (AA) and myelodysplasia (MDS) are forms of bone marrow failure that are often part of the same progressive underlying disorder. While most cases are simplex and idiopathic, some show a clear pattern of inheritance; therefore, elucidating the underlying genetic cause could lead to a greater understanding of this spectrum of disorders. We used a combination of exome sequencing and SNP haplotype analysis to identify causative mutations in a family with a history of autosomal-dominant AA/MDS. We identified a heterozygous mutation in SRP72, a component of the signal recognition particle (SRP) that is responsible for the translocation of nascent membrane-bound and excreted proteins to the endoplasmic reticulum. A subsequent screen revealed another autosomal-dominant family with an inherited heterozygous SRP72 mutation. Transfection of these sequences into mammalian cells suggested that these proteins localize incorrectly within the cell. Furthermore, coimmunoprecipitation of epitope-tagged SRP72 indicated that the essential RNA component of the SRP did not fully associate with one of the SRP72 variants. These results suggest that inherited mutations in a component of the SRP have a role in the pathophysiology of AA/MDS, identifying a third pathway for developing these disorders alongside transcription factor and telomerase mutations.
British Journal of Haematology | 2012
Harriet Holme; Upal Hossain; Michael Kirwan; Amanda J. Walne; Tom Vulliamy; Inderjeet Dokal
The myelodysplastic syndromes (MDS) are heterogeneous and can evolve into acute myeloid leukaemia (AML). Rare familial cases are reported in which five disease genes have been identified to date (RUNX1, CEBPA, TERC, TERT and GATA2). Here we report the genetic categorization of 27 families with familial MDS/AML. All of these families were screened for RUNX1, CEBPA, TERC, TERT and GATA2 as well as TET2 and NPM1. Five of the 27 families had telomerase mutations; one had a RUNX1 mutation, while none were found to have TET2, CEBPA or NPM1 mutations. We identified four families with heterozygous GATA2 mutations, each associated with a different phenotype. While one of these mutations is novel, three have been previously reported: one has been described in dendritic cell, monocyte, B and NK lymphoid (DCML) deficiency and one is in a family that has been reported in a series with primary lymphoedema with a predisposition to AML (Emberger syndrome). In summary, genetic characterization was shown in 10 (four GATA2, three TERT, two TERC, one RUNX1) of these families; however 17 remain uncharacterized, highlighting marked genetic heterogeneity in familial MDS/AML and the scope for further functional pathways that could give rise to this group of disorders.