Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Klemba is active.

Publication


Featured researches published by Michael Klemba.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Bestatin-based chemical biology strategy reveals distinct roles for malaria M1- and M17-family aminopeptidases

Michael B. Harbut; Geetha Velmourougane; Seema Dalal; Gilana Reiss; James C. Whisstock; Özlem Önder; Dustin Brisson; Sheena McGowan; Michael Klemba; Doron C. Greenbaum

Malaria causes worldwide morbidity and mortality, and while chemotherapy remains an excellent means of malaria control, drug-resistant parasites necessitate the discovery of new antimalarials. Peptidases are a promising class of drug targets and perform several important roles during the Plasmodium falciparum erythrocytic life cycle. Herein, we report a multidisciplinary effort combining activity-based protein profiling, biochemical, and peptidomic approaches to functionally analyze two genetically essential P. falciparum metallo-aminopeptidases (MAPs), PfA-M1 and Pf-LAP. Through the synthesis of a suite of activity-based probes (ABPs) based on the general MAP inhibitor scaffold, bestatin, we generated specific ABPs for these two enzymes. Specific inhibition of PfA-M1 caused swelling of the parasite digestive vacuole and prevented proteolysis of hemoglobin (Hb)-derived oligopeptides, likely starving the parasite resulting in death. In contrast, inhibition of Pf-LAP was lethal to parasites early in the life cycle, prior to the onset of Hb degradation suggesting that Pf-LAP has an essential role outside of Hb digestion.


Biochemical Journal | 2007

Evaluation of pH during cytostomal endocytosis and vacuolar catabolism of haemoglobin in Plasmodium falciparum

Nectarios Klonis; Olivia Tan; Katherine E. Jackson; Daniel E. Goldberg; Michael Klemba; Leann Tilley

The DV (digestive vacuole) of the malaria parasite, Plasmodium falciparum, is the site of Hb (haemoglobin) digestion and haem detoxification and, as a consequence, the site of action of CQ (chloroquine) and related antimalarials. However, the precise pH of the DV and the endocytic vesicles that feed it has proved difficult to ascertain. We have developed new methods using EGFP [enhanced GFP (green fluorescent protein)] to measure the pH of intracellular compartments. We have generated a series of transfectants in CQ-sensitive and -resistant parasite strains expressing GFP chimaeras of the DV haemoglobinase, plasmepsin II. Using a quantitative flow cytometric assay, the DV pH was determined to be 5.4-5.5. No differences were detected between CQ-sensitive and -resistant strains. We have also developed a method that relies on the pH dependence of GFP photobleaching kinetics to estimate the pH of the DV compartment. This method gives a pH estimate consistent with the intensity-based measurement. Accumulation of the pH-sensitive probe, LysoSensor Blue, in the DV confirms the acidity of this compartment and shows that the cytostomal vesicles are not measurably acidic, indicating that they are unlikely to be the site of Hb digestion or the site of CQ accumulation. We show that a GFP probe located outside the DV reports a pH value close to neutral. The transfectants and methods that we have developed represent useful tools for investigating the pH of GFP-containing compartments and should be of general use in other systems.


Journal of Medicinal Chemistry | 2011

Synthesis of new (-)-bestatin-based inhibitor libraries reveals a novel binding mode in the S1 pocket of the essential malaria M1 metalloaminopeptidase.

Geetha Velmourougane; Michael B. Harbut; Seema Dalal; Sheena McGowan; Christine Oellig; Nataline Meinhardt; James C. Whisstock; Michael Klemba; Doron C. Greenbaum

The malarial PfA-M1 metallo-aminopeptidase is considered a putative drug target. The natural product dipeptide mimetic, bestatin, is a potent inhibitor of PfA-M1. Herein we present a new, efficient, and high-yielding protocol for the synthesis of bestatin derivatives from natural and unnatural N-Boc-d-amino acids. A diverse library of bestatin derivatives was synthesized with variants at the side chain of either the α-hydroxy-β-amino acid (P1) or the adjacent natural α-amino acid (P1). Surprisingly, we found that extended aromatic side chains at the P1 position resulted in potent inhibition against PfA-M1. To understand these data, we determined the X-ray cocrystal structures of PfA-M1 with two derivatives having either a Tyr(OMe) 15 or Tyr(OBzl) 16 at the P1 position and observed substantial inhibitor-induced rearrangement of the primary loop within the PfA-M1 pocket that interacts with the P1 side chain. Our data provide important insights for the rational design of more potent and selective inhibitors of this enzyme that may eventually lead to new therapies for malaria.


Molecular and Biochemical Parasitology | 2011

Biochemical characterization of Plasmodium falciparum dipeptidyl aminopeptidase 1.

Flora Wang; Priscilla Krai; Edgar Deu; Brittney Bibb; Conni Lauritzen; John Pedersen; Matthew Bogyo; Michael Klemba

Dipeptidyl aminopeptidase 1 (DPAP1) is an essential food vacuole enzyme with a putative role in hemoglobin catabolism by the erythrocytic malaria parasite. Here, the biochemical properties of DPAP1 have been investigated and compared to those of the human ortholog cathepsin C. To facilitate the characterization of DPAP1, we have developed a method for the production of purified recombinant DPAP1 with properties closely resembling those of the native enzyme. Like cathepsin C, DPAP1 is a chloride-activated enzyme that is most efficient in catalyzing amide bond hydrolysis at acidic pH values. The monomeric quaternary structure of DPAP1 differs from the homotetrameric structure of cathepsin C, which suggests that tetramerization is required for a cathepsin C-specific function. The S1 and S2 subsite preferences of DPAP1 and cathepsin C were profiled with a positional scanning synthetic combinatorial library. The S1 preferences bore close similarity to those of other C1-family cysteine peptidases. The S2 subsites of both DPAP1 and cathepsin C accepted aliphatic hydrophobic residues, proline, and some polar residues, yielding a distinct specificity profile. DPAP1 efficiently catalyzed the hydrolysis of several fluorogenic dipeptide substrates; surprisingly, however, a potential substrate with a P2-phenylalanine residue was instead a competitive inhibitor. Together, our biochemical data suggest that DPAP1 accelerates the production of amino acids from hemoglobin by bridging the gap between the endopeptidase and aminopeptidase activities of the food vacuole. Two reversible cathepsin C inhibitors potently inhibited both recombinant and native DPAP1, thereby validating the use of recombinant DPAP1 for future inhibitor discovery and characterization.


Eukaryotic Cell | 2015

Isoprenoid precursor biosynthesis is the essential metabolic role of the apicoplast during gametocytogenesis in Plasmodium falciparum

Jessica D. Wiley; Emilio F. Merino; Priscilla Krai; Kyle J. McLean; Abhai K. Tripathi; Joel Vega-Rodríguez; Marcelo Jacobs-Lorena; Michael Klemba; Maria B. Cassera

ABSTRACT The malaria parasite harbors a relict plastid called the apicoplast and its discovery opened a new avenue for drug discovery and development due to its unusual, nonmammalian metabolism. The apicoplast is essential during the asexual intraerythrocytic and hepatic stages of the parasite, and there is strong evidence supporting its essential metabolic role during the mosquito stages of the parasite. Supply of the isoprenoid building blocks isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) is the essential metabolic function of the apicoplast during the asexual intraerythrocytic stages. However, the metabolic role of the apicoplast during gametocyte development, the malaria stages transmitted to the mosquito, remains unknown. In this study, we showed that production of IPP for isoprenoid biosynthesis is the essential metabolic function of the apicoplast during gametocytogenesis, by obtaining normal gametocytes lacking the apicoplast when supplemented with IPP. When IPP supplementation was removed early in gametocytogenesis, developmental defects were observed, supporting the essential role of isoprenoids for normal gametocytogenesis. Furthermore, mosquitoes infected with gametocytes lacking the apicoplast developed fewer and smaller oocysts that failed to produce sporozoites. This finding further supports the essential role of the apicoplast in establishing a successful infection in the mosquito vector. Our study supports isoprenoid biosynthesis as a valid drug target for development of malaria transmission-blocking inhibitors.


Amino Acids | 2014

Unnatural amino acids increase activity and specificity of synthetic substrates for human and malarial cathepsin C.

Marcin Poreba; Marko Mihelič; Priscilla Krai; Jelena Rajković; Artur Krężel; Małgorzata Pawełczak; Michael Klemba; Dušan Turk; Boris Turk; Rafał Latajka; Marcin Drag

Mammalian cathepsin C is primarily responsible for the removal of N-terminal dipeptides and activation of several serine proteases in inflammatory or immune cells, while its malarial parasite ortholog dipeptidyl aminopeptidase 1 plays a crucial role in catabolizing the hemoglobin of its host erythrocyte. In this report, we describe the systematic substrate specificity analysis of three cathepsin C orthologs from Homo sapiens (human), Bos taurus (bovine) and Plasmodium falciparum (malaria parasite). Here, we present a new approach with a tailored fluorogenic substrate library designed and synthesized to probe the S1 and S2 pocket preferences of these enzymes with both natural and a broad range of unnatural amino acids. Our approach identified very efficiently hydrolyzed substrates containing unnatural amino acids, which resulted in the design of significantly better substrates than those previously known. Additionally, in this study significant differences in terms of the structures of optimal substrates for human and malarial orthologs are important from the therapeutic point of view. These data can be also used for the design of specific inhibitors or activity-based probes.


Molecular & Cellular Proteomics | 2016

Comparative Proteomics and Functional Analysis Reveal a Role of Plasmodium falciparum Osmiophilic Bodies in Malaria Parasite Transmission

Pablo Suárez-Cortés; Vikram Sharma; Lucia Bertuccini; Giulia Costa; Naa-Lamiley Bannerman; Anna Rosa Sannella; Kim C. Williamson; Michael Klemba; Elena A. Levashina; Edwin Lasonder; Pietro Alano

An essential step in the transmission of the malaria parasite to the Anopheles vector is the transformation of the mature gametocytes into gametes in the mosquito gut, where they egress from the erythrocytes and mate to produce a zygote, which matures into a motile ookinete. Osmiophilic bodies are electron dense secretory organelles of the female gametocytes which discharge their contents during gamete formation, suggestive of a role in gamete egress. Only one protein with no functional annotation, Pfg377, is described to specifically reside in osmiophilic bodies in Plasmodium falciparum. Importantly, Pfg377 defective gametocytes lack osmiophilic bodies and fail to infect mosquitoes, as confirmed here with newly produced pfg377 disrupted parasites. The unique feature of Pfg377 defective gametocytes of lacking osmiophilic bodies was here exploited to perform comparative, label free, global and affinity proteomics analyses of mutant and wild type gametocytes to identify components of these organelles. Subcellular localization studies with fluorescent reporter gene fusions and specific antibodies revealed an osmiophilic body localization for four out of five candidate gene products analyzed: the proteases PfSUB2 (subtilisin 2) and PfDPAP2 (Dipeptidyl aminopeptidase 2), the ortholog of the osmiophilic body component of the rodent malaria gametocytes PbGEST and a previously nonannotated 13 kDa protein. These results establish that osmiophilic bodies and their components are dispensable or marginally contribute (PfDPAP2) to gamete egress. Instead, this work reveals a previously unsuspected role of these organelles in P. falciparum development in the mosquito vector.


PLOS ONE | 2010

Use of activity-based probes to develop high throughput screening assays that can be performed in complex cell extracts.

Edgar Deu; Zhimou Yang; Flora Wang; Michael Klemba; Matthew Bogyo

Background High throughput screening (HTS) is one of the primary tools used to identify novel enzyme inhibitors. However, its applicability is generally restricted to targets that can either be expressed recombinantly or purified in large quantities. Methodology and Principal Findings Here, we described a method to use activity-based probes (ABPs) to identify substrates that are sufficiently selective to allow HTS in complex biological samples. Because ABPs label their target enzymes through the formation of a permanent covalent bond, we can correlate labeling of target enzymes in a complex mixture with inhibition of turnover of a substrate in that same mixture. Thus, substrate specificity can be determined and substrates with sufficiently high selectivity for HTS can be identified. In this study, we demonstrate this method by using an ABP for dipeptidyl aminopeptidases to identify (Pro-Arg)2-Rhodamine as a specific substrate for DPAP1 in Plasmodium falciparum lysates and Cathepsin C in rat liver extracts. We then used this substrate to develop highly sensitive HTS assays (Z’>0.8) that are suitable for use in screening large collections of small molecules (i.e >300,000) for inhibitors of these proteases. Finally, we demonstrate that it is possible to use broad-spectrum ABPs to identify target-specific substrates. Conclusions We believe that this approach will have value for many enzymatic systems where access to large amounts of active enzyme is problematic.


Molecular and Biochemical Parasitology | 2012

Engagement of the S1, S1' and S2' subsites drives efficient catalysis of peptide bond hydrolysis by the M1-family aminopeptidase from Plasmodium falciparum.

Seema Dalal; Daniel Ragheb; Michael Klemba

The M1-family aminopeptidase PfA-M1 catalyzes the last step in the catabolism of human hemoglobin to amino acids in the Plasmodium falciparum food vacuole. In this study, the structural features of the substrate that promote efficient PfA-M1-catalyzed peptide bond hydrolysis were analyzed. X-Ala and Ala-X dipeptide substrates were employed to characterize the specificities of the enzymes S1 and S1 subsites. Both subsites exhibited a preference for basic and hydrophobic sidechains over polar and acidic sidechains. The relative specificity of the S1 subsite was similar over the pH range 5.5-7.5. Substrate P1 and P1 residues affected both K(m) and k(cat), revealing that sidechain-subsite interactions not only drive the formation of the Michaelis complex but also influence the rates of ensuing chemical steps. Only a small fraction of the available binding energy was exploited in interactions between substrate sidechains and the S1 and S1 subsites, which indicates a modest level of complementarity. There was no correlation between S1 and S1 specificities and amino acid abundance in hemoglobin. Interactions between PfA-M1 and the backbone atoms of the P1 and P2 residues as well as the P2 sidechain further contributed to the catalytic efficiency of substrate hydrolysis. By demonstrating the engagement of multiple, broad-specificity subsites in PfA-M1, these studies provide insight into how this enzyme is able to efficiently generate amino acids from highly sequence-diverse di- and oligopeptides in the food vacuole.


Journal of Biological Chemistry | 2013

A Naturally Variable Residue in the S1 Subsite of M1 Family Aminopeptidases Modulates Catalytic Properties and Promotes Functional Specialization

Seema Dalal; Daniel Ragheb; Florian D. Schubot; Michael Klemba

Background: M1 family aminopeptidases exhibit a diverse range of specificities. Results: Substitutions at a residue in the S1 binding pocket can induce structural changes and remodel specificity. Conclusion: Mutations in the S1 subsite contribute to the acquisition of distinct specificities. Significance: Variation of a key residue in the S1 binding pocket provides a pathway for the evolution of new specificities and functions. M1 family metallo-aminopeptidases fulfill a wide range of critical and in some cases medically relevant roles in humans and human pathogens. The specificity of M1-aminopeptidases is dominated by the interaction of the well defined S1 subsite with the side chain of the first (P1) residue of the substrate and can vary widely. Extensive natural variation occurs at one of the residues that contributes to formation of the cylindrical S1 subsite. We investigated whether this natural variation contributes to diversity in S1 subsite specificity. Effects of 11 substitutions of the S1 subsite residue valine 459 in the Plasmodium falciparum aminopeptidase PfA-M1 and of three substitutions of the homologous residue methionine 260 in Escherichia coli aminopeptidase N were characterized. Many of these substitutions altered steady-state kinetic parameters for dipeptide hydrolysis and remodeled S1 subsite specificity. The most dramatic change in specificity resulted from substitution with proline, which collapsed S1 subsite specificity such that only substrates with P1-Arg, -Lys, or -Met were appreciably hydrolyzed. The structure of PfA-M1 V459P revealed that the proline substitution induced a local conformational change in the polypeptide backbone that resulted in a narrowed S1 subsite. The restricted specificity and active site backbone conformation of PfA-M1 V459P mirrored those of endoplasmic reticulum aminopeptidase 2, a human enzyme with proline in the variable S1 subsite position. Our results provide compelling evidence that changes in the variable residue in the S1 subsite of M1-aminopeptidases have facilitated the evolution of new specificities and ultimately novel functions for this important class of enzymes.

Collaboration


Dive into the Michael Klemba's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael B. Harbut

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

James C. Whisstock

Australian Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge