Michael Koeppen
University of Colorado Denver
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael Koeppen.
Seminars in Cardiothoracic and Vascular Anesthesia | 2012
Anja Frank; Megan Bonney; Stephanie Bonney; Lindsay Weitzel; Michael Koeppen; Tobias Eckle
Myocardial ischemia reperfusion injury contributes to adverse cardiovascular outcomes after myocardial ischemia, cardiac surgery or circulatory arrest. Primarily, no blood flow to the heart causes an imbalance between oxygen demand and supply, named ischemia (from the Greek isch, restriction; and haema, blood), resulting in damage or dysfunction of the cardiac tissue. Instinctively, early and fast restoration of blood flow has been established to be the treatment of choice to prevent further tissue injury. Indeed, the use of thrombolytic therapy or primary percutaneous coronary intervention is the most effective strategy for reducing the size of a myocardial infarct and improving the clinical outcome. Unfortunately, restoring blood flow to the ischemic myocardium, named reperfusion, can also induce injury. This phenomenon was therefore termed myocardial ischemia reperfusion injury. Subsequent studies in animal models of acute myocardial infarction suggest that myocardial ischemia reperfusion injury accounts for up to 50% of the final size of a myocardial infarct. Consequently, many researchers aim to understand the underlying molecular mechanism of myocardial ischemia reperfusion injury to find therapeutic strategies ultimately reducing the final infarct size. Despite the identification of numerous therapeutic strategies at the bench, many of them are just in the process of being translated to bedside. The current review discusses the most striking basic science findings made during the past decades that are currently under clinical evaluation, with the ultimate goal to treat patients who are suffering from myocardial ischemia reperfusion–associated tissue injury.
Physiology | 2009
Tobias Eckle; Michael Koeppen; Holger K. Eltzschig
Acute lung injury (ALI) is a lung disease characterized by pulmonary edema and severe hypoxia. The past decade hosted a search for endogenous mechanisms controlling lung inflammation and pulmonary edema during ALI. As such, recent evidence indicates extracellular adenosine in orchestrating the resolution of pulmonary edema and inflammation during ALI.
PLOS ONE | 2009
Michael Koeppen; Tobias Eckle; Holger K. Eltzschig
Objective Intravenous adenosine induces temporary bradycardia. This is due to the activation of extracellular adenosine receptors (ARs). While adenosine can signal through any of four ARs (A1AR, A2AAR, A2BAR, A3AR), previous ex vivo studies implicated the A1AR in the heart-rate slowing effects. Here, we used comparative genetic in vivo studies to address the contribution of individual ARs to the heart-rate slowing effects of intravascular adenosine. Methods and Results We studied gene-targeted mice for individual ARs to define their in vivo contribution to the heart-rate slowing effects of adenosine. Anesthetized mice were treated with a bolus of intravascular adenosine, followed by measurements of heart-rate and blood pressure via a carotid artery catheter. These studies demonstrated dose-dependent slowing of the heart rate with adenosine treatment in wild-type, A2AAR−/−, A2BAR−/−, or A3AR−/− mice. In contrast, adenosine-dependent slowing of the heart-rate was completely abolished in A1AR−/− mice. Moreover, pre-treatment with a specific A1AR antagonist (DPCPX) attenuated the heart-rate slowing effects of adenosine in wild-type, A2AAR−/−, or A2BAR−/− mice, but did not alter hemodynamic responses of A1AR−/− mice. Conclusions The present studies combine pharmacological and genetic in vivo evidence for a selective role of the A1AR in slowing the heart rate during adenosine bolus injection.
Current Opinion in Anesthesiology | 2011
Michael Koeppen; Tobias Eckle; Holger K. Eltzschig
Purpose of review Hypoxia represents one of the strongest transcriptional stimuli known to us. In most cases, hypoxia-induced changes in gene expression are directed towards adapting tissues to conditions of limited oxygen availability. Recent findings As a well known example, physical exercise at high altitude results in the transcriptional induction of erythropoietin that functions to increase oxygen carrying capacity and red cell volume. Studies of the transcriptional pathway responsible for the induction of erythropoietin during conditions of hypoxia led to the discovery of the transcription factor hypoxia-inducible factor (HIF) that is known today as the key transcription factor for hypoxia adaptation. Surgical patients are frequently at risk for experiencing detrimental effects of hypoxia or ischemia, for example, in the context of acute kidney injury, myocardial, intestinal or hepatic ischemia, acute lung injury, or during organ transplantation. Summary In the present review, we discuss the mechanisms of transcriptional adaptation to hypoxia and provide evidence supporting the hypothesis that targeting hypoxia-induced inflammation can represent novel pharmacologic strategies to improve perioperative outcomes. Currently, such strategies are being explored at an experimental level, but we hope that some of these targets can be translated into perioperative patient care within the next decade.
Mucosal Immunology | 2013
Michael Koeppen; E N McNamee; Carol M. Aherne; M Faigle; G P Downey; S P Colgan; Christopher M. Evans; David A. Schwartz; Holger K. Eltzschig
Acute lung injury (ALI) is associated with high morbidity and mortality in critically ill patients. At present, the functional contribution of airway mucins to ALI is unknown. We hypothesized that excessive mucus production could be detrimental during lung injury. Initial transcriptional profiling of airway mucins revealed a selective and robust induction of MUC5AC upon cyclic mechanical stretch exposure of pulmonary epithelia (Calu-3). Additional studies confirmed time- and stretch-dose-dependent induction of MUC5AC transcript or protein during cyclic mechanical stretch exposure in vitro or during ventilator-induced lung injury in vivo. Patients suffering from ALI showed a 58-fold increase in MUC5AC protein in their bronchoalveolar lavage. Studies of the MUC5AC promoter implicated nuclear factor κB in Muc5ac induction during ALI. Moreover, mice with gene-targeted deletion of Muc5ac−/− experience attenuated lung inflammation and pulmonary edema during injurious ventilation. We observed that neutrophil trafficking into the lungs of Muc5ac−/− mice was selectively attenuated. This implicates that endogenous Muc5ac production enhances pulmonary neutrophil trafficking during lung injury. Together, these studies reveal a detrimental role for endogenous Muc5ac production during ALI and suggest pharmacological strategies to dampen mucin production in the treatment of lung injury.
Journal of Immunology | 2015
Seong-wook Seo; Michael Koeppen; Stephanie Bonney; Merit Gobel; Molly Thayer; Patrick N. Harter; Katya Ravid; Holger K. Eltzschig; Michel Mittelbronn; Lori A. Walker; Tobias Eckle
The adenosine A2b receptor (Adora2b) has been implicated in cardioprotection from myocardial ischemia. As such, Adora2b was found to be critical in ischemic preconditioning (IP) or ischemia/reperfusion (IR) injury of the heart. Whereas Adora2b is present on various cells types, the tissue-specific role of Adora2b in cardioprotection is still unknown. To study the tissue-specific role of Adora2b signaling on inflammatory cells, endothelia, or myocytes during myocardial ischemia in vivo, we intercrossed floxed Adora2b mice with Lyz2-Cre+, VE-cadherin-Cre+, or myosin-Cre+ transgenic mice, respectively. Mice were exposed to 60 min of myocardial ischemia with or without IP (four times for 5 min) followed by 120 min of reperfusion. Cardioprotection by IP was abolished in Adora2bf/f-VE-cadherin-Cre+ or Adora2bf/f-myosin-Cre+, indicating that Adora2b signaling on endothelia or myocytes mediates IP. In contrast, primarily Adora2b signaling on inflammatory cells was necessary to provide cardioprotection in IR injury, indicated by significantly larger infarcts and higher troponin levels in Adora2bf/f-Lyz2-Cre+ mice only. Cytokine profiling of IR injury in Adora2bf/f-Lyz2-Cre+ mice pointed toward polymorphonuclear neutrophils (PMNs). Analysis of PMNs from Adora2bf/f-Lyz2-Cre+ confirmed PMNs as one source of identified tissue cytokines. Finally, adoptive transfer of Adora2b−/− PMNs revealed a critical role of Adora2b on PMNs in cardioprotection from IR injury. Adora2b signaling mediates different types of cardioprotection in a tissue-specific manner. These findings have implications for the use of Adora2b agonists in the treatment or prevention of myocardial injury by ischemia.
Seminars in Cardiothoracic and Vascular Anesthesia | 2015
Jason Brainard; Merit Gobel; Karsten Bartels; Benjamin Scott; Michael Koeppen; Tobias Eckle
The rotation of the earth and associated alternating cycles of light and dark—the basis of our circadian rhythms—are fundamental to human biology and culture. However, it was not until 1971 that researchers first began to describe the molecular mechanisms for the circadian system. During the past few years, groundbreaking research has revealed a multitude of circadian genes affecting a variety of clinical diseases, including diabetes, obesity, sepsis, cardiac ischemia, and sudden cardiac death. Anesthesiologists, in the operating room and intensive care units, manage these diseases on a daily basis as they significantly affect patient outcomes. Intriguingly, sedatives, anesthetics, and the intensive care unit environment have all been shown to disrupt the circadian system in patients. In the current review, we will discuss how newly acquired knowledge of circadian rhythms could lead to changes in clinical practice and new therapeutic concepts.
Journal of Visualized Experiments | 2011
Tobias Eckle; Michael Koeppen; Holger K. Eltzschig
Murine studies of acute injury are an area of intense investigation, as knockout mice for different genes are becoming increasingly available 1-38. Cardioprotection by ischemic preconditioning (IP) remains an area of intense investigation. To further elucidate its molecular basis, the use of knockout mouse studies is particularly important 7, 14, 30, 39. Despite the fact that previous studies have already successfully performed cardiac ischemia and reperfusion in mice, this model is technically very challenging. Particularly, visual identification of the coronary artery, placement of the suture around the vessel and coronary occlusion by tying off the vessel with a supported knot is technically difficult. In addition, re-opening the knot for intermittent reperfusion of the coronary artery during IP without causing surgical trauma adds additional challenge. Moreover, if the knot is not tied down strong enough, inadvertent reperfusion due to imperfect occlusion of the coronary may affect the results. In fact, this can easily occur due to the movement of the beating heart. Based on potential problems associated with using a knotted coronary occlusion system, we adopted a previously published model of chronic cardiomyopathy based on a hanging weight system for intermittent coronary artery occlusion during IP 39. In fact, coronary artery occlusion can thus be achieved without having to occlude the coronary by a knot. Moreover, reperfusion of the vessel can be easily achieved by supporting the hanging weights which are in a remote localization from cardiac tissues. We tested this system systematically, including variation of ischemia and reperfusion times, preconditioning regiments, body temperature and genetic backgrounds39. In addition to infarct staining, we tested cardiac troponin I (cTnI) as a marker of myocardial infarction in this model. In fact, plasma levels of cTnI correlated with infarct sizes (R2=0.8). Finally, we could show in several studies that this technique yields highly reproducible infarct sizes during murine IP and myocardial infarction6, 8, 30, 40, 41. Therefore, this technique may be helpful for researchers who pursue molecular mechanisms involved in cardioprotection by IP using a genetic approach in mice with targeted gene deletion. Further studies on cardiac IP using transgenic mice may consider this technique.
Journal of Visualized Experiments | 2011
Michael Koeppen; Tobias Eckle; Holger K. Eltzschig
Murine models are extensively used to investigate acute injuries of different organs systems (1-34). Acute lung injury (ALI), which occurs with prolonged mechanical ventilation, contributes to morbidity and mortality of critical illness, and studies on novel genetic or pharmacological targets are areas of intense investigation (1-3, 5, 8, 26, 30, 33-36). ALI is defined by the acute onset of the disease, which leads to non-cardiac pulmonary edema and subsequent impairment of pulmonary gas exchange (36). We have developed a murine model of ALI by using a pressure-controlled ventilation to induce ventilator-induced lung injury (2). For this purpose, C57BL/6 mice are anesthetized and a tracheotomy is performed followed by induction of ALI via mechanical ventilation. Mice are ventilated in a pressure-controlled setting with an inspiratory peak pressure of 45 mbar over 1 - 3 hours. As outcome parameters, pulmonary edema (wet-to-dry ratio), bronchoalveolar fluid albumin content, bronchoalveolar fluid and pulmonary tissue myeloperoxidase content and pulmonary gas exchange are assessed (2). Using this technique we could show that it sufficiently induces acute lung inflammation and can distinguish between different treatment groups or genotypes (1-3, 5). Therefore this technique may be helpful for researchers who pursue molecular mechanisms involved in ALI using a genetic approach in mice with gene-targeted deletion.
PLOS ONE | 2017
Colleen Marie Bartman; Yoshimasa Oyama; Ludmila Khailova; Lori A. Walker; Michael Koeppen; Tobias Eckle
A wide search for ischemic preconditioning (IPC) mechanisms of cardioprotection identified the light elicited circadian rhythm protein Period 2 (Per2) to be cardioprotective. Studies on cardiac metabolism found a key role for light elicited Per2 in mediating metabolic dependence on carbohydrate metabolism. To profile Per2 mediated pathways following IPC of the mouse heart, we performed a genome array and identified 352 abundantly expressed and well-characterized Per2 dependent micro RNAs. One prominent result of our in silico analysis for cardiac Per2 dependent micro RNAs revealed a selective role for miR-21 in the regulation of hypoxia and metabolic pathways. Based on this Per2 dependency, we subsequently found a diurnal expression pattern for miR-21 with higher miR-21 expression levels at Zeitgeber time (ZT) 15 compared to ZT3. Gain or loss of function studies for miR-21 using miRNA mimics or miRNA inhibitors and a Seahorse Bioanalyzer uncovered a critical role of miR-21 for cellular glycolysis, glycolytic capacity, and glycolytic reserve. Exposing mice to intense light, a strategy to induce Per2, led to a robust induction of cardiac miR-21 tissue levels and decreased infarct sizes, which was abolished in miR-21-/- mice. Similarly, first translational studies in humans using intense blue light exposure for 5 days in healthy volunteers resulted in increased plasma miR-21 levels which was associated with increased phosphofructokinase activity, the rate-limiting enzyme in glycolysis. Together, we identified miR-21 as cardioprotective downstream target of Per2 and suggest intense light therapy as a potential strategy to enhance miR-21 activity and subsequent carbohydrate metabolism in humans.