Michael Kolbe
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael Kolbe.
Nature | 2012
Antoine Loquet; Nikolaos G. Sgourakis; Rashmi Gupta; Karin Giller; Dietmar Riedel; Christian Goosmann; Christian Griesinger; Michael Kolbe; David Baker; Stefan Becker; Adam Lange
Pathogenic bacteria using a type III secretion system (T3SS) to manipulate host cells cause many different infections including Shigella dysentery, typhoid fever, enterohaemorrhagic colitis and bubonic plague. An essential part of the T3SS is a hollow needle-like protein filament through which effector proteins are injected into eukaryotic host cells. Currently, the three-dimensional structure of the needle is unknown because it is not amenable to X-ray crystallography and solution NMR, as a result of its inherent non-crystallinity and insolubility. Cryo-electron microscopy combined with crystal or solution NMR subunit structures has recently provided a powerful hybrid approach for studying supramolecular assemblies, resulting in low-resolution and medium-resolution models. However, such approaches cannot deliver atomic details, especially of the crucial subunit–subunit interfaces, because of the limited cryo-electron microscopic resolution obtained in these studies. Here we report an alternative approach combining recombinant wild-type needle production, solid-state NMR, electron microscopy and Rosetta modelling to reveal the supramolecular interfaces and ultimately the complete atomic structure of the Salmonella typhimurium T3SS needle. We show that the 80-residue subunits form a right-handed helical assembly with roughly 11 subunits per two turns, similar to that of the flagellar filament of S. typhimurium. In contrast to established models of the needle in which the amino terminus of the protein subunit was assumed to be α-helical and positioned inside the needle, our model reveals an extended amino-terminal domain that is positioned on the surface of the needle, while the highly conserved carboxy terminus points towards the lumen.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Oliver P. Ernst; Verena Gramse; Michael Kolbe; Klaus Peter Hofmann; Martin Heck
G protein-coupled receptors mediate biological signals by stimulating nucleotide exchange in heterotrimeric G proteins (Gαβγ). Receptor dimers have been proposed as the functional unit responsible for catalytic interaction with Gαβγ. To investigate whether a G protein-coupled receptor monomer can activate Gαβγ, we used the retinal photoreceptor rhodopsin and its cognate G protein transducin (Gt) to determine the stoichiometry of rhodopsin/Gt binding and the rate of catalyzed nucleotide exchange in Gt. Purified rhodopsin was prepared in dodecyl maltoside detergent solution. Rhodopsin was monomeric as concluded from fluorescence resonance energy transfer, copurification studies with fluorescent labeled and unlabeled rhodopsin, size exclusion chromatography, and multiangle laser light scattering. A 1:1 complex between light-activated rhodopsin and Gt was found in the elution profiles, and one molecule of GDP was released upon complex formation. Analysis of the speed of catalytic rhodopsin/Gt interaction yielded a maximum of ≈50 Gt molecules per second and molecule of activated rhodopsin. The bimolecular rate constant is close to the diffusion limit in the diluted system. The results show that the interaction of Gt with an activated rhodopsin monomer is sufficient for fully functional Gt activation. Although the activation rate in solution is at the physically possible limit, the rate in the native membrane is still 10-fold higher. This is likely attributable to the precise orientation of the G protein to the membrane surface, which enables a fast docking process preceding the actual activation step. Whether docking in membranes involves the formation of rhodopsin dimers or oligomers remains to be elucidated.
Nature | 2014
Pedro Moura-Alves; Kellen C. Faé; Erica Houthuys; Anca Dorhoi; Annika Kreuchwig; Jens Furkert; Nicola Barison; Anne Diehl; Antje Munder; Patricia Constant; Tatsiana Skrahina; Ute Guhlich-Bornhof; Marion Klemm; Anne-Britta Koehler; Silke Bandermann; Christian Goosmann; Hans-Joachim Mollenkopf; Robert Hurwitz; Volker Brinkmann; Simon Fillatreau; Mamadou Daffé; Burkhard Tümmler; Michael Kolbe; Hartmut Oschkinat; Gerd Krause; Stefan H. E. Kaufmann
The aryl hydrocarbon receptor (AhR) is a highly conserved ligand-dependent transcription factor that senses environmental toxins and endogenous ligands, thereby inducing detoxifying enzymes and modulating immune cell differentiation and responses. We hypothesized that AhR evolved to sense not only environmental pollutants but also microbial insults. We characterized bacterial pigmented virulence factors, namely the phenazines from Pseudomonas aeruginosa and the naphthoquinone phthiocol from Mycobacterium tuberculosis, as ligands of AhR. Upon ligand binding, AhR activation leads to virulence factor degradation and regulated cytokine and chemokine production. The relevance of AhR to host defence is underlined by heightened susceptibility of AhR-deficient mice to both P. aeruginosa and M. tuberculosis. Thus, we demonstrate that AhR senses distinct bacterial virulence factors and controls antibacterial responses, supporting a previously unidentified role for AhR as an intracellular pattern recognition receptor, and identify bacterial pigments as a new class of pathogen-associated molecular patterns.
Cellular and Molecular Life Sciences | 2006
Ingolf E. Blasig; Lars Winkler; B. Lassowski; Sebastian L. Mueller; N. Zuleger; Eberhard Krause; Gerd Krause; Klaus Gast; Michael Kolbe; Jörg Piontek
Abstract.Tight junctions seal intercellular clefts via membrane-related strands, hence, maintaining important organ functions. We investigated the self-association of strand-forming transmembrane tight junction proteins. The regulatory tight junction protein occludin was differently tagged and cotransfected in eucaryotic cells. These occludins colocalized within the plasma membrane of the same cell, coprecipitated and exhibited fluorescence resonance energy transfer. Differently tagged strand-forming claudin-5 also colocalized in the plasma membrane of the same cell and showed fluorescence resonance energy transfer. This demonstrates self-association in intact cells both of occludin and claudin-5 in one plasma membrane. In search of dimerizing regions of occludin, dimerization of its cytosolic C-terminal coiledcoil domain was identified. In claudin-5, the second extracellular loop was detected as a dimer. Since the transmembrane junctional adhesion molecule also is known to dimerize, the assumption that homodimerization of transmembrane tight junction proteins may serve as a common structural feature in tight junction assembly is supported.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Michele Lunelli; Ravi Kumar Lokareddy; Arturo Zychlinsky; Michael Kolbe
The delivery of virulence factors into host cells through type III secretion systems is essential for enterobacterial pathogenesis. Molecular chaperones bind specifically to virulence factors in the bacterial cytosol before secretion. Invasion plasmid gene C (IpgC) is a chaperone that binds 2 essential virulence factors of Shigella: invasion plasmid antigens (Ipa) B and C. Here, we report the crystal structure of IpgC alone and in complex with the chaperone binding domain (CBD) of IpaB. The chaperone captures the CBD in an extended conformation that is stabilized by conserved residues lining the cleft. Analysis of the cocrystal structure reveals a sequence motif that is functional in the IpaB translocator class from different bacteria as determined by isothermal titration calorimetry. Our results show how translocators are chaperoned and may allow the design of inhibitors of enterobacterial diseases.
Nature Structural & Molecular Biology | 2010
Ömer Poyraz; Holger Schmidt; Karsten Seidel; Friedmar Delissen; Christian Ader; Hezi Tenenboim; Christian Goosmann; Britta Laube; Andreas F. Thünemann; Arturo Zychlinsky; Marc Baldus; Adam Lange; Christian Griesinger; Michael Kolbe
Pathogenic Gram-negative bacteria use a type three secretion system (TTSS) to deliver virulence factors into host cells. Although the order in which proteins incorporate into the growing TTSS is well described, the underlying assembly mechanisms are still unclear. Here we show that the TTSS needle protomer refolds spontaneously to extend the needle from the distal end. We developed a functional mutant of the needle protomer from Shigella flexneri and Salmonella typhimurium to study its assembly in vitro. We show that the protomer partially refolds from α-helix into β-strand conformation to form the TTSS needle. Reconstitution experiments show that needle growth does not require ATP. Thus, like the structurally related flagellar systems, the needle elongates by subunit polymerization at the distal end but requires protomer refolding. Our studies provide a starting point to understand the molecular assembly mechanisms and the structure of the TTSS at atomic level.
PLOS Pathogens | 2013
Jean Philippe Demers; Nikolaos G. Sgourakis; Rashmi Gupta; Antoine Loquet; Karin Giller; Dietmar Riedel; Britta Laube; Michael Kolbe; David Baker; Stefan Becker; Adam Lange
The Type Three Secretion System (T3SS), or injectisome, is a macromolecular infection machinery present in many pathogenic Gram-negative bacteria. It consists of a basal body, anchored in both bacterial membranes, and a hollow needle through which effector proteins are delivered into the target host cell. Two different architectures of the T3SS needle have been previously proposed. First, an atomic model of the Salmonella typhimurium needle was generated from solid-state NMR data. The needle subunit protein, PrgI, comprises a rigid-extended N-terminal segment and a helix-loop-helix motif with the N-terminus located on the outside face of the needle. Second, a model of the Shigella flexneri needle was generated from a high-resolution 7.7-Å cryo-electron microscopy density map. The subunit protein, MxiH, contains an N-terminal α-helix, a loop, another α-helix, a 14-residue-long β-hairpin (Q51–Q64) and a C-terminal α-helix, with the N-terminus facing inward to the lumen of the needle. In the current study, we carried out solid-state NMR measurements of wild-type Shigella flexneri needles polymerized in vitro and identified the following secondary structure elements for MxiH: a rigid-extended N-terminal segment (S2-T11), an α-helix (L12-A38), a loop (E39-P44) and a C-terminal α-helix (Q45-R83). Using immunogold labeling in vitro and in vivo on functional needles, we located the N-terminus of MxiH subunits on the exterior of the assembly, consistent with evolutionary sequence conservation patterns and mutagenesis data. We generated a homology model of Shigella flexneri needles compatible with both experimental data: the MxiH solid-state NMR chemical shifts and the state-of-the-art cryoEM density map. These results corroborate the solid-state NMR structure previously solved for Salmonella typhimurium PrgI needles and establish that Shigella flexneri and Salmonella typhimurium subunit proteins adopt a conserved structure and orientation in their assembled state. Our study reveals a common structural architecture of T3SS needles, essential to understand T3SS-mediated infection and develop treatments.
Cell Death and Disease | 2012
L Senerovic; S P Tsunoda; Christian Goosmann; Volker Brinkmann; Arturo Zychlinsky; Felix Meissner; Michael Kolbe
The Gram-negative bacterium Shigella flexneri invades the colonic epithelium and causes bacillary dysentery. S. flexneri requires the virulence factor invasion plasmid antigen B (IpaB) to invade host cells, escape from the phagosome and induce macrophage cell death. The mechanism by which IpaB functions remains unclear. Here, we show that purified IpaB spontaneously oligomerizes and inserts into the plasma membrane of target cells forming cation selective ion channels. After internalization, IpaB channels permit potassium influx within endolysosomal compartments inducing vacuolar destabilization. Endolysosomal leakage is followed by an ICE protease-activating factor-dependent activation of Caspase-1 in macrophages and cell death. Our results provide a mechanism for how the effector protein IpaB with its ion channel activity causes phagosomal destabilization and induces macrophage death. These data may explain how S. flexneri uses secreted IpaB to escape phagosome and kill the host cells during infection and, may be extended to homologs from other medically important enteropathogenic bacteria.
Cell Host & Microbe | 2012
Joëlle Mounier; Gaelle Boncompain; Lidija Senerovic; Thibault Lagache; Fabrice Chrétien; Franck Perez; Michael Kolbe; Jean-Christophe Olivo-Marin; Philippe J. Sansonetti; Nathalie Sauvonnet
Shigella infection causes destruction of the human colonic epithelial barrier. The Golgi network and recycling endosomes are essential for maintaining epithelial barrier function. Here we show that Shigella epithelial invasion induces fragmentation of the Golgi complex with consequent inhibition of both secretion and retrograde transport in the infected host cell. Shigella induces tubulation of the Rab11-positive compartment, thereby affecting cell surface receptor recycling. The molecular process underlying the observed damage to the Golgi complex and receptor recycling is a massive redistribution of plasma membrane cholesterol to the sites of Shigella entry. IpaB, a virulence factor of Shigella that is known to bind cholesterol, is necessary and sufficient to induce Golgi fragmentation and reorganization of the recycling compartment. Shigella infection-induced Golgi disorganization was also observed in vivo, suggesting that this mechanism affecting the sorting of cell surface molecules likely contributes to host epithelial barrier disruption associated with Shigella pathogenesis.
PLOS Pathogens | 2011
Michele Lunelli; Robert Hurwitz; Jutta Lambers; Michael Kolbe
Many infectious Gram-negative bacteria, including Salmonella typhimurium, require a Type Three Secretion System (T3SS) to translocate virulence factors into host cells. The T3SS consists of a membrane protein complex and an extracellular needle together that form a continuous channel. Regulated secretion of virulence factors requires the presence of SipD at the T3SS needle tip in S. typhimurium. Here we report three-dimensional structures of individual SipD, SipD in fusion with the needle subunit PrgI, and of SipD:PrgI in complex with the bile salt, deoxycholate. Assembly of the complex involves major conformational changes in both SipD and PrgI. This rearrangement is mediated via a π bulge in the central SipD helix and is stabilized by conserved amino acids that may allow for specificity in the assembly and composition of the tip proteins. Five copies each of the needle subunit PrgI and SipD form the T3SS needle tip complex. Using surface plasmon resonance spectroscopy and crystal structure analysis we found that the T3SS needle tip complex binds deoxycholate with micromolar affinity via a cleft formed at the SipD:PrgI interface. In the structure-based three-dimensional model of the T3SS needle tip, the bound deoxycholate faces the host membrane. Recently, binding of SipD with bile salts present in the gut was shown to impede bacterial infection. Binding of bile salts to the SipD:PrgI interface in this particular arrangement may thus inhibit the T3SS function. The structures presented in this study provide insight into the open state of the T3SS needle tip. Our findings present the atomic details of the T3SS arrangement occurring at the pathogen-host interface.