Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Komárek is active.

Publication


Featured researches published by Michael Komárek.


Environment International | 2010

Contamination of vineyard soils with fungicides: a review of environmental and toxicological aspects.

Michael Komárek; Eva Čadková; Vladislav Chrastný; François Bordas; Jean-Claude Bollinger

The contamination of agricultural soils with inorganic (Cu-based) and organic pesticides (including their residues) presents a major environmental and toxicological concern. This review summarizes available studies published on the contamination of vineyard soils throughout the world with Cu-based and synthetic organic fungicides. It focuses on the behavior of these contaminants in vineyard soils and the associated environmental and toxicological risks. The concentrations of Cu in soils exceed the legislative limits valid in the EU in the vast majority of the studied vineyards. Regarding the environmental and toxicological hazards associated with the extensive use of fungicides, the choice of fungicides should be performed carefully according to the physico-chemical properties of the soils and climatic and hydrogeological characteristics of the vine-growing regions.


Environmental Pollution | 2013

Chemical stabilization of metals and arsenic in contaminated soils using oxides--a review.

Michael Komárek; Aleš Vaněk; Vojtěch Ettler

Oxides and their precursors have been extensively studied, either singly or in combination with other amendments promoting sorption, for in situ stabilization of metals and As in contaminated soils. This remediation option aims at reducing the available fraction of metal(loid)s, notably in the root zone, and thus lowering the risks associated with their leaching, ecotoxicity, plant uptake and human exposure. This review summarizes literature data on mechanisms involved in the immobilization process and presents results from laboratory and field experiments, including the subsequent influence on higher plants and aided phytostabilization. Despite the partial successes in the field, recent knowledge highlights the importance of long-term and large-scale field studies evaluating the stability of the oxide-based amendments in the treated soils and their efficiency in the long-term.


Plant Physiology and Biochemistry | 2017

Exposure of engineered nanomaterials to plants: Insights into the physiological and biochemical responses-A review.

Nubia Zuverza-Mena; Domingo Martínez-Fernández; Wenchao Du; Jose A. Hernandez-Viezcas; Nestor J. Bonilla-Bird; Martha Laura López-Moreno; Michael Komárek; Jose R. Peralta-Videa; Jorge L. Gardea-Torresdey

Recent investigations show that carbon-based and metal-based engineered nanomaterials (ENMs), components of consumer goods and agricultural products, have the potential to build up in sediments and biosolid-amended agricultural soils. In addition, reports indicate that both carbon-based and metal-based ENMs affect plants differently at the physiological, biochemical, nutritional, and genetic levels. The toxicity threshold is species-dependent and responses to ENMs are driven by a series of factors including the nanomaterial characteristics and environmental conditions. Effects on the growth, physiological and biochemical traits, production and food quality, among others, have been reported. However, a complete understanding of the dynamics of interactions between plants and ENMs is not clear enough yet. This review presents recent publications on the physiological and biochemical effects that commercial carbon-based and metal-based ENMs have in terrestrial plants. This document focuses on crop plants because of their relevance in human nutrition and health. We have summarized the mechanisms of interaction between plants and ENMs as well as identified gaps in knowledge for future investigations.


Bioresource Technology | 2016

Lead and cadmium sorption mechanisms on magnetically modified biochars.

Lukáš Trakal; Veronika Veselská; Ivo Šafařík; Martina Vítková; Sylva Číhalová; Michael Komárek

This paper discusses Cd(II) and Pb(II) sorption efficiency of biochars modified by impregnation with magnetic particles. All selected biochar characteristics were significantly affected after the modification. More specifically, the cation exchange capacity increased after the modification, except for grape stalk biochar. However, the changes in the pH value, PZC, and BET surface after modification process were less pronounced. The metal loading rate was also significantly improved, especially for Cd(II) sorption on/in nut shield and plum stone biochars (10- and 16-times increase, respectively). The results indicated that cation exchange (as a metal sorption mechanism) was strengthened after Fe oxide impregnation, which limited the desorbed amount of tested metals. In contrast, the magnetization of grape stalk biochar reduced Pb(II) sorption in comparison with that of pristine biochar. Magnetic modification is, therefore, more efficient for biochars with well-developed structure and for more mobile metals, such as Cd(II).


Journal of Colloid and Interface Science | 2013

Adsorption of copper, cadmium, lead and zinc onto a synthetic manganese oxide

Loïc Della Puppa; Michael Komárek; François Bordas; Jean-Claude Bollinger; Emmanuel Joussein

Due to its simple and inexpensive synthesis, a new amorphous hydrous manganese oxide (AMO) has been studied as a possible chemical stabilizing agent for soils contaminated with metals. Preliminary experiments evaluating the stability of AMO in pure water have reported only minor dissolution (5.70% and 0.24% depending on the w/v ratio). Sorption kinetics have shown fast metal adsorption, especially for Pb. The sorption capacities of AMO for Cu, Cd, Pb, and Zn have been described and compared with synthetic birnessite for pH 4 and 5.5. Both oxides show similar sorption capacities at pH 4 despite the fact that birnessite characteristics (pH of zero point charge, specific surface area and cation exchange capacity) are more favorable for metal sorption. Moreover, the pH adsorption-edges show that the AMO is more pH-dependent than birnessite.


Bioresource Technology | 2014

Geochemical and spectroscopic investigations of Cd and Pb sorption mechanisms on contrasting biochars: engineering implications.

Lukáš Trakal; Deniz Bingöl; Michael Pohořelý; Miroslav Hruška; Michael Komárek

Biochars prepared from nut shells, plum stones, wheat straws, grape stalks and grape husks were tested as potential sorbents for Cd and Pb. Mechanisms responsible for metal retention were investigated and optimal sorption conditions were evaluated using the RSM approach. Results indicated that all tested biochars can effectively remove Cd and Pb from aqueous solution (efficiency varied between 43.8% and 100%). The removal rate of both metals is the least affected by the biochar morphology and specific surface but this removal efficiency is strongly pH-dependent. Results of variable metal removal combined with different optimized conditions explain the different metal sorption mechanisms, where the predominant mechanism is ion exchange. In addition, this mechanism showed very strong binding of sorbed metals as confirmed by the post-desorption of the fully metal-loaded biochars. Finally, these biochars could thus also be applicable for metal contaminated soils to reduce mobility and bioavailability of Cd and Pb.


Environmental Pollution | 2010

Potential and drawbacks of EDDS-enhanced phytoextraction of copper from contaminated soils.

Michael Komárek; Aleš Vaněk; Libor Mrnka; Radka Sudová; Jiřina Száková; Václav Tejnecký; Vladislav Chrastný

Incubation and pot experiments using poplar (Populus nigra L. cv. Wolterson) were performed in order to evaluate the questionable efficiency of EDDS-enhanced phytoextraction of Cu from contaminated soils. Despite the promising conditions of the experiment (low contamination of soils with a single metal with a high affinity for EDDS, metal tolerant poplar species capable of producing high biomass yields, root colonization by mycorrhizal fungi), the phytoextraction efficiency was not sufficient. The EDDS concentrations used in this study (3 and 6 mmol kg(-1)) enhanced the mobility (up to a 100-fold increase) and plant uptake of Cu (up to a 65-fold increase). However, despite EDDS degradation and the competition of Fe and Al for the chelant, Cu leaching cannot be omitted during the process. Due to the low efficiency, further research should be focused on other environment-friendly methods of soil remediation.


Journal of Hazardous Materials | 2009

Retention of copper originating from different fungicides in contrasting soil types

Michael Komárek; Aleš Vaněk; Vladislav Chrastný; Jiřina Száková; Karolina Kubová; Petr Drahota; J. Balík

This work described the retention of Cu from two different commonly used pesticides, the Bordeaux mixture (CuSO(4)+Ca(OH)(2)) and Cu-oxychloride (3Cu(OH)(2).CuCl(2)), and from Cu(NO(3))(2) in contrasting soil types (Leptosol, Chernozem, Cambisol). Thermodynamic modeling showed that Cu speciation was similar in all fungicide solutions. However, the retention of Cu differed with the fungicide used (maximum retention from the Bordeaux mixture) which indicates that different retention processes occurred in the studied soils. The suggested mechanisms include: specific and non-specific adsorption (especially on soil organic matter), precipitation of newly formed phases, such as CuO, Cu(OH)(2), Cu(2)(OH)(3)NO(3), CuCO(3)/Cu(2)(OH)(2)CO(3) and in the case of the Bordeaux mixture, precipitation of various Cu-hydroxysulfates. These phases were identified by the speciation model. The retention of fungicide-derived Cu in the studied soil types followed well the Freundlich isotherm and was directly controlled by the chemical form of Cu. This fact should be taken into account for both environmental and practical applications.


Environmental Science & Technology | 2015

Competitive Adsorption of Cd(II), Cr(VI), and Pb(II) onto Nanomaghemite: A Spectroscopic and Modeling Approach

Michael Komárek; Carla M. Koretsky; Krishna J. Stephen; Daniel S. Alessi; Vladislav Chrastný

A combined modeling and spectroscopic approach is used to describe Cd(II), Cr(VI), and Pb(II) adsorption onto nanomaghemite and nanomaghemite coated quartz. A pseudo-second order kinetic model fitted the adsorption data well. The sorption capacity of nanomaghemite was evaluated using a Langmuir isotherm model, and a diffuse double layer surface complexation model (DLM) was developed to describe metal adsorption. Adsorption mechanisms were assessed using X-ray photoelectron spectroscopy and X-ray absorption spectroscopy. Pb(II) adsorption occurs mainly via formation of inner-sphere complexes, whereas Cr(VI) likely adsorbs mainly as outer-sphere complexes and Cd(II) as a mixture of inner- and outer-sphere complexes. The simple DLM describes well the pH-dependence of single adsorption edges. However, it fails to adequately capture metal adsorption behavior over broad ranges of ionic strength or metal-loading on the sorbents. For systems with equimolar concentrations of Pb(II), Cd(II), and Cr(VI). Pb(II) adsorption was reasonably well predicted by the DLM, but predictions were poorer for Cr(VI) and Cd(II). This study demonstrates that a simple DLM can describe well the adsorption of the studied metals in mixed sorbate-sorbent systems, but only under narrow ranges of ionic strength or metal loading. The results also highlight the sorption potential of nanomaghemite for metals in complex systems.


Chemosphere | 2009

Interactions of EDDS with Fe- and Al-(hydr)oxides.

Michael Komárek; Aleš Vaněk; Jiřina Száková; J. Balík; Vladislav Chrastný

The efficiency of EDDS ([S,S]-ethylenediaminedisuccinate) in metal (phyto) extraction has been discussed in many recent papers. This study demonstrated that the presence of Fe- and Al-(hydr)oxides in soils influences the speciation of EDDS and thus can decrease the extraction of the targeted metallic contaminants (e.g., Pb, Cu, Zn). Above all, amorphous and poorly crystalline oxides (e.g., ferrihydrite) seem to significantly control dissolved Fe and Al concentrations in soils in the presence of metal-EDDS complexes and especially uncomplexed EDDS. Metals released from these minerals compete for the chelating agent and the extraction efficiency of the targeted metals is lowered. The formation of stable Cu-EDDS complexes, which are preferentially formed in soils with high Cu concentrations, results into a lower dissolution of ferrihydrite and goethite compared to free EDDS and Al-EDDS. Information about the contents of amorphous and poorly crystalline oxides in the treated soils would thus be beneficial for choosing efficient EDDS dosages.

Collaboration


Dive into the Michael Komárek's collaboration.

Top Co-Authors

Avatar

Vladislav Chrastný

Czech University of Life Sciences Prague

View shared research outputs
Top Co-Authors

Avatar

Aleš Vaněk

Czech University of Life Sciences Prague

View shared research outputs
Top Co-Authors

Avatar

Jiřina Száková

Czech University of Life Sciences Prague

View shared research outputs
Top Co-Authors

Avatar

Pavel Tlustoš

Czech University of Life Sciences Prague

View shared research outputs
Top Co-Authors

Avatar

Vojtěch Ettler

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Martin Mihaljevič

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Martina Vítková

Czech University of Life Sciences Prague

View shared research outputs
Top Co-Authors

Avatar

Hana Šillerová

Czech University of Life Sciences Prague

View shared research outputs
Top Co-Authors

Avatar

Zuzana Michálková

Czech University of Life Sciences Prague

View shared research outputs
Top Co-Authors

Avatar

Domingo Martínez-Fernández

Czech University of Life Sciences Prague

View shared research outputs
Researchain Logo
Decentralizing Knowledge