Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Kometer is active.

Publication


Featured researches published by Michael Kometer.


Nature Reviews Neuroscience | 2010

The neurobiology of psychedelic drugs: implications for the treatment of mood disorders

Franz X. Vollenweider; Michael Kometer

After a pause of nearly 40 years in research into the effects of psychedelic drugs, recent advances in our understanding of the neurobiology of psychedelics, such as lysergic acid diethylamide (LSD), psilocybin and ketamine have led to renewed interest in the clinical potential of psychedelics in the treatment of various psychiatric disorders. Recent behavioural and neuroimaging data show that psychedelics modulate neural circuits that have been implicated in mood and affective disorders, and can reduce the clinical symptoms of these disorders. These findings raise the possibility that research into psychedelics might identify novel therapeutic mechanisms and approaches that are based on glutamate-driven neuroplasticity.


Journal of Psychopharmacology | 2011

Acute, subacute and long-term subjective effects of psilocybin in healthy humans: a pooled analysis of experimental studies

Erich Studerus; Michael Kometer; Felix Hasler; Franz X. Vollenweider

Psilocybin and related hallucinogenic compounds are increasingly used in human research. However, due to limited information about potential subjective side effects, the controlled medical use of these compounds has remained controversial. We therefore analysed acute, short- and long-term subjective effects of psilocybin in healthy humans by pooling raw data from eight double-blind placebo-controlled experimental studies conducted between 1999 and 2008. The analysis included 110 healthy subjects who had received 1–4 oral doses of psilocybin (45–315 µg/kg body weight). Although psilocybin dose-dependently induced profound changes in mood, perception, thought and self-experience, most subjects described the experience as pleasurable, enriching and non-threatening. Acute adverse drug reactions, characterized by strong dysphoria and/or anxiety/panic, occurred only in the two highest dose conditions in a relatively small proportion of subjects. All acute adverse drug reactions were successfully managed by providing interpersonal support and did not need psychopharmacological intervention. Follow-up questionnaires indicated no subsequent drug abuse, persisting perception disorders, prolonged psychosis or other long-term impairment of functioning in any of our subjects. The results suggest that the administration of moderate doses of psilocybin to healthy, high-functioning and well-prepared subjects in the context of a carefully monitored research environment is associated with an acceptable level of risk.


The Journal of Neuroscience | 2013

Activation of Serotonin 2A Receptors Underlies the Psilocybin-Induced Effects on α Oscillations, N170 Visual-Evoked Potentials, and Visual Hallucinations

Michael Kometer; André Schmidt; Lutz Jäncke; Franz X. Vollenweider

Visual illusions and hallucinations are hallmarks of serotonergic hallucinogen-induced altered states of consciousness. Although the serotonergic hallucinogen psilocybin activates multiple serotonin (5-HT) receptors, recent evidence suggests that activation of 5-HT2A receptors may lead to the formation of visual hallucinations by increasing cortical excitability and altering visual-evoked cortical responses. To address this hypothesis, we assessed the effects of psilocybin (215 μg/kg vs placebo) on both α oscillations that regulate cortical excitability and early visual-evoked P1 and N170 potentials in healthy human subjects. To further disentangle the specific contributions of 5-HT2A receptors, subjects were additionally pretreated with the preferential 5-HT2A receptor antagonist ketanserin (50 mg vs placebo). We found that psilocybin strongly decreased prestimulus parieto-occipital α power values, thus precluding a subsequent stimulus-induced α power decrease. Furthermore, psilocybin strongly decreased N170 potentials associated with the appearance of visual perceptual alterations, including visual hallucinations. All of these effects were blocked by pretreatment with the 5-HT2A antagonist ketanserin, indicating that activation of 5-HT2A receptors by psilocybin profoundly modulates the neurophysiological and phenomenological indices of visual processing. Specifically, activation of 5-HT2A receptors may induce a processing mode in which stimulus-driven cortical excitation is overwhelmed by spontaneous neuronal excitation through the modulation of α oscillations. Furthermore, the observed reduction of N170 visual-evoked potentials may be a key mechanism underlying 5-HT2A receptor-mediated visual hallucinations. This change in N170 potentials may be important not only for psilocybin-induced states but also for understanding acute hallucinatory states seen in psychiatric disorders, such as schizophrenia and Parkinsons disease.


Biological Psychiatry | 2012

Psilocybin biases facial recognition, goal-directed behavior, and mood state toward positive relative to negative emotions through different serotonergic subreceptors.

Michael Kometer; André Schmidt; Rosilla Bachmann; Erich Studerus; Erich Seifritz; Franz X. Vollenweider

BACKGROUND Serotonin (5-HT) 1A and 2A receptors have been associated with dysfunctional emotional processing biases in mood disorders. These receptors further predominantly mediate the subjective and behavioral effects of psilocybin and might be important for its recently suggested antidepressive effects. However, the effect of psilocybin on emotional processing biases and the specific contribution of 5-HT2A receptors across different emotional domains is unknown. METHODS In a randomized, double-blind study, 17 healthy human subjects received on 4 separate days placebo, psilocybin (215 μg/kg), the preferential 5-HT2A antagonist ketanserin (50 mg), or psilocybin plus ketanserin. Mood states were assessed by self-report ratings, and behavioral and event-related potential measurements were used to quantify facial emotional recognition and goal-directed behavior toward emotional cues. RESULTS Psilocybin enhanced positive mood and attenuated recognition of negative facial expression. Furthermore, psilocybin increased goal-directed behavior toward positive compared with negative cues, facilitated positive but inhibited negative sequential emotional effects, and valence-dependently attenuated the P300 component. Ketanserin alone had no effects but blocked the psilocybin-induced mood enhancement and decreased recognition of negative facial expression. CONCLUSIONS This study shows that psilocybin shifts the emotional bias across various psychological domains and that activation of 5-HT2A receptors is central in mood regulation and emotional face recognition in healthy subjects. These findings may not only have implications for the pathophysiology of dysfunctional emotional biases but may also provide a framework to delineate the mechanisms underlying psylocybins putative antidepressant effects.


PLOS ONE | 2012

Prediction of psilocybin response in healthy volunteers.

Erich Studerus; Alex Gamma; Michael Kometer; Franz X. Vollenweider

Responses to hallucinogenic drugs, such as psilocybin, are believed to be critically dependent on the users personality, current mood state, drug pre-experiences, expectancies, and social and environmental variables. However, little is known about the order of importance of these variables and their effect sizes in comparison to drug dose. Hence, this study investigated the effects of 24 predictor variables, including age, sex, education, personality traits, drug pre-experience, mental state before drug intake, experimental setting, and drug dose on the acute response to psilocybin. The analysis was based on the pooled data of 23 controlled experimental studies involving 409 psilocybin administrations to 261 healthy volunteers. Multiple linear mixed effects models were fitted for each of 15 response variables. Although drug dose was clearly the most important predictor for all measured response variables, several non-pharmacological variables significantly contributed to the effects of psilocybin. Specifically, having a high score in the personality trait of Absorption, being in an emotionally excitable and active state immediately before drug intake, and having experienced few psychological problems in past weeks were most strongly associated with pleasant and mystical-type experiences, whereas high Emotional Excitability, low age, and an experimental setting involving positron emission tomography most strongly predicted unpleasant and/or anxious reactions to psilocybin. The results confirm that non-pharmacological variables play an important role in the effects of psilocybin.


Neuropsychopharmacology | 2012

Mismatch Negativity Encoding of Prediction Errors Predicts S -ketamine-Induced Cognitive Impairments

André Schmidt; Rosilla Bachmann; Michael Kometer; Philipp A. Csomor; Klaas E. Stephan; Erich Seifritz; Franz X. Vollenweider

Psychotomimetics like the N-methyl-D-aspartate receptor (NMDAR) antagonist ketamine and the 5-hydroxytryptamine2A receptor (5-HT2AR) agonist psilocybin induce psychotic symptoms in healthy volunteers that resemble those of schizophrenia. Recent theories of psychosis posit that aberrant encoding of prediction errors (PE) may underlie the expression of psychotic symptoms. This study used a roving mismatch negativity (MMN) paradigm to investigate whether the encoding of PE is affected by pharmacological manipulation of NMDAR or 5-HT2AR, and whether the encoding of PE under placebo can be used to predict drug-induced symptoms. Using a double-blind within-subject placebo-controlled design, S-ketamine and psilocybin, respectively, were administrated to two groups of healthy subjects. Psychological alterations were assessed using a revised version of the Altered States of Consciousness (ASC-R) questionnaire. As an index of PE, we computed changes in MMN amplitudes as a function of the number of preceding standards (MMN memory trace effect) during a roving paradigm. S-ketamine, but not psilocybin, disrupted PE processing as expressed by a frontally disrupted MMN memory trace effect. Although both drugs produced positive-like symptoms, the extent of PE processing under placebo only correlated significantly with the severity of cognitive impairments induced by S-ketamine. Our results suggest that the NMDAR, but not the 5-HT2AR system, is implicated in PE processing during the MMN paradigm, and that aberrant PE signaling may contribute to the formation of cognitive impairments. The assessment of the MMN memory trace in schizophrenia may allow detecting early phases of the illness and might also serve to assess the efficacy of novel pharmacological treatments, in particular of cognitive impairments.


Neuropsychopharmacology | 2012

Psilocybin-Induced Deficits in Automatic and Controlled Inhibition are Attenuated by Ketanserin in Healthy Human Volunteers

Boris B. Quednow; Michael Kometer; Mark A. Geyer; Franz X. Vollenweider

The serotonin-2A receptor (5-HT2AR) has been implicated in the pathogenesis of schizophrenia and related inhibitory gating and behavioral inhibition deficits of schizophrenia patients. The hallucinogen psilocybin disrupts automatic forms of sensorimotor gating and response inhibition in humans, but it is unclear so far whether the 5-HT2AR or 5-HT1AR agonist properties of its bioactive metabolite psilocin account for these effects. Thus, we investigated whether psilocybin-induced deficits in automatic and controlled inhibition in healthy humans could be attenuated by the 5-HT2A/2CR antagonist ketanserin. A total of 16 healthy participants received placebo, ketanserin (40 mg p.o.), psilocybin (260 μg/kg p.o.), or psilocybin plus ketanserin in a double-blind, randomized, and counterbalanced order. Sensorimotor gating was measured by prepulse inhibition (PPI) of the acoustic startle response. The effects on psychopathological core dimensions and behavioral inhibition were assessed by the altered states of consciousness questionnaire (5D-ASC), and the Color-Word Stroop Test. Psilocybin decreased PPI at short lead intervals (30 ms), increased all 5D-ASC scores, and selectively increased errors in the interference condition of the Stroop Test. Stroop interference and Stroop effect of the response latencies were increased under psilocybin as well. Psilocybin-induced alterations were attenuated by ketanserin pretreatment, whereas ketanserin alone had no significant effects. These findings suggest that the disrupting effects of psilocybin on automatic and controlled inhibition processes are attributable to 5-HT2AR stimulation. Sensorimotor gating and attentional control deficits of schizophrenia patients might be due to changes within the 5-HT2AR system.


Biological Psychiatry | 2011

The 5-HT2A/1A Agonist Psilocybin Disrupts Modal Object Completion Associated with Visual Hallucinations

Michael Kometer; B. Rael Cahn; David Andel; Olivia Carter; Franz X. Vollenweider

BACKGROUND Recent findings suggest that the serotonergic system and particularly the 5-HT2A/1A receptors are implicated in visual processing and possibly the pathophysiology of visual disturbances including hallucinations in schizophrenia and Parkinsons disease. METHODS To investigate the role of 5-HT2A/1A receptors in visual processing the effect of the hallucinogenic 5-HT2A/1A agonist psilocybin (125 and 250 μg/kg vs. placebo) on the spatiotemporal dynamics of modal object completion was assessed in normal volunteers (n = 17) using visual evoked potential recordings in conjunction with topographic-mapping and source analysis. These effects were then considered in relation to the subjective intensity of psilocybin-induced visual hallucinations quantified by psychometric measurement. RESULTS Psilocybin dose-dependently decreased the N170 and, in contrast, slightly enhanced the P1 component selectively over occipital electrode sites. The decrease of the N170 was most apparent during the processing of incomplete object figures. Moreover, during the time period of the N170, the overall reduction of the activation in the right extrastriate and posterior parietal areas correlated positively with the intensity of visual hallucinations. CONCLUSIONS These results suggest a central role of the 5-HT2A/1A-receptors in the modulation of visual processing. Specifically, a reduced N170 component was identified as potentially reflecting a key process of 5-HT2A/1A receptor-mediated visual hallucinations and aberrant modal object completion potential.


Schizophrenia Bulletin | 2015

Aberrant Current Source-Density and Lagged Phase Synchronization of Neural Oscillations as Markers for Emerging Psychosis

Avinash Ramyead; Michael Kometer; Erich Studerus; Susan Koranyi; Sarah Ittig; Ute Gschwandtner; Peter Fuhr; Anita Riecher-Rössler

BACKGROUND Converging evidence indicates that neural oscillations coordinate activity across brain areas, a process which is seemingly perturbed in schizophrenia. In particular, beta (13-30 Hz) and gamma (30-50 Hz) oscillations were repeatedly found to be disturbed in schizophrenia and linked to clinical symptoms. However, it remains unknown whether abnormalities in current source density (CSD) and lagged phase synchronization of oscillations across distributed regions of the brain already occur in patients with an at-risk mental state (ARMS) for psychosis. METHODS To further elucidate this issue, we assessed resting-state EEG data of 63 ARMS patients and 29 healthy controls (HC). Twenty-three ARMS patients later made a transition to psychosis (ARMS-T) and 40 did not (ARMS-NT). CSD and lagged phase synchronization of neural oscillations across brain areas were assessed using eLORETA and their relationships to neurocognitive deficits and clinical symptoms were analyzed using linear mixed-effects models. RESULTS ARMS-T patients showed higher gamma activity in the medial prefrontal cortex compared to HC, which was associated with abstract reasoning abilities in ARMS-T. Furthermore, in ARMS-T patients lagged phase synchronization of beta oscillations decreased more over Euclidian distance compared to ARMS-NT and HC. Finally, this steep spatial decrease of phase synchronicity was most pronounced in ARMS-T patients with high positive and negative symptoms scores. CONCLUSIONS These results indicate that patients who will later make the transition to psychosis are characterized by impairments in localized and synchronized neural oscillations providing new insights into the pathophysiological mechanisms of schizophrenic psychoses and may be used to improve the prediction of psychosis.


Psychopharmacology | 2013

The NMDA antagonist ketamine and the 5-HT agonist psilocybin produce dissociable effects on structural encoding of emotional face expressions

André Schmidt; Michael Kometer; Rosilla Bachmann; Erich Seifritz; Franz X. Vollenweider

RationaleBoth glutamate and serotonin (5-HT) play a key role in the pathophysiology of emotional biases. Recent studies indicate that the glutamate N-methyl-d-aspartate (NMDA) receptor antagonist ketamine and the 5-HT receptor agonist psilocybin are implicated in emotion processing. However, as yet, no study has systematically compared their contribution to emotional biases.ObjectivesThis study used event-related potentials (ERPs) and signal detection theory to compare the effects of the NMDA (via S-ketamine) and 5-HT (via psilocybin) receptor system on non-conscious or conscious emotional face processing biases.MethodsS-ketamine or psilocybin was administrated to two groups of healthy subjects in a double-blind within-subject placebo-controlled design. We behaviorally assessed objective thresholds for non-conscious discrimination in all drug conditions. Electrophysiological responses to fearful, happy, and neutral faces were subsequently recorded with the face-specific P100 and N170 ERP.ResultsBoth S-ketamine and psilocybin impaired the encoding of fearful faces as expressed by a reduced N170 over parieto-occipital brain regions. In contrast, while S-ketamine also impaired the encoding of happy facial expressions, psilocybin had no effect on the N170 in response to happy faces.ConclusionThis study demonstrates that the NMDA and 5-HT receptor systems differentially contribute to the structural encoding of emotional face expressions as expressed by the N170. These findings suggest that the assessment of early visual evoked responses might allow detecting pharmacologically induced changes in emotional processing biases and thus provides a framework to study the pathophysiology of dysfunctional emotional biases.

Collaboration


Dive into the Michael Kometer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge