Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Kormann is active.

Publication


Featured researches published by Michael Kormann.


Nature Biotechnology | 2011

Expression of therapeutic proteins after delivery of chemically modified mRNA in mice

Michael Kormann; Günther Hasenpusch; Manish Kumar Aneja; Gabriela Nica; Andreas W. Flemmer; Susanne Herber-Jonat; Marceline Huppmann; Lauren Mays; Marta Illenyi; Andrea Schams; Matthias Griese; Iris Bittmann; Rupert Handgretinger; Dominik Hartl; Joseph Rosenecker; Carsten Rudolph

Current viral vectors for gene therapy are associated with serious safety concerns, including leukemogenesis, and nonviral vectors are limited by low gene transfer efficiency. Here we investigate the therapeutic utility of chemically modified mRNA as an alternative to DNA-based gene therapy. A combination of nucleotide modifications abrogates mRNA interaction with Toll-like receptor (TLR)3, TLR7, TLR8 and retinoid-inducible gene I (RIG-I), resulting in low immunogenicity and higher stability in mice. A single intramuscular injection of modified murine erythropoietin mRNA raises the average hematocrit in mice from 51.5% to 64.2% after 28 days. In a mouse model of a lethal congenital lung disease caused by a lack of surfactant protein B (SP-B), twice weekly local application of an aerosol of modified SP-B mRNA to the lung restored 71% of the wild-type SP-B expression, and treated mice survived until the predetermined end of the study after 28 days.


Nature Medicine | 2010

CXCR2 mediates NADPH oxidase-independent neutrophil extracellular trap formation in cystic fibrosis airway inflammation

Veronica Marcos; Zhe Zhou; Ali Önder Yildirim; Alexander Bohla; Andreas Hector; Ljubomir Vitkov; Eva-Maria Wiedenbauer; Wolf Dietrich Krautgartner; Walter Stoiber; Bernd H. Belohradsky; Nikolaus Rieber; Michael Kormann; Barbara Koller; Adelbert A. Roscher; Dirk Roos; Matthias Griese; Oliver Eickelberg; Gerd Döring; Marcus A. Mall; Dominik Hartl

Upon activation, neutrophils release DNA fibers decorated with antimicrobial proteins, forming neutrophil extracellular traps (NETs). Although NETs are bactericidal and contribute to innate host defense, excessive NET formation has been linked to the pathogenesis of autoinflammatory diseases. However, the mechanisms regulating NET formation, particularly during chronic inflammation, are poorly understood. Here we show that the G protein–coupled receptor (GPCR) CXCR2 mediates NET formation. Downstream analyses showed that CXCR2-mediated NET formation was independent of NADPH oxidase and involved Src family kinases. We show the pathophysiological relevance of this mechanism in cystic fibrosis lung disease, characterized by chronic neutrophilic inflammation. We found abundant NETs in airway fluids of individuals with cystic fibrosis and mouse cystic fibrosis lung disease, and NET amounts correlated with impaired obstructive lung function. Pulmonary blockade of CXCR2 by intra-airway delivery of small-molecule antagonists inhibited NET formation and improved lung function in vivo without affecting neutrophil recruitment, proteolytic activity or antibacterial host defense. These studies establish CXCR2 as a receptor mediating NADPH oxidase–independent NET formation and provide evidence that this GPCR pathway is operative and druggable in cystic fibrosis lung disease.


European Journal of Pharmaceutics and Biopharmaceutics | 2009

Current prospects for mRNA gene delivery.

Ayako Yamamoto; Michael Kormann; Joseph Rosenecker; Carsten Rudolph

Replication-deficient viruses have been used most successfully in the field of gene therapy because of their high transfection efficiency. However, the risk of insertional mutagenesis and induction of unwanted immune responses remains still critical for their safe application. On the other hand, nonviral vectors have been intensively investigated for plasmid DNA (pDNA) delivery as a safer alternative although their gene transfer efficiency is still many folds lower than for viral vectors, which has been predominately attributed to the insufficient transport of pDNA into the nucleus. Instead of pDNA, messenger RNA (mRNA) has recently emerged as an attractive and promising alternative in the nonviral gene delivery field. This strategy combines several advantages compared to pDNA: (i) the nuclear membrane, which is a major obstacle for pDNA, can be avoided because mRNA exerts its function in the cytoplasm; (ii) the risk of insertional mutagenesis can be excluded; (iii) the determination and use of an efficient promoter is omitted; (iv) repeated application is possible; (v) mRNA is also effective in non-dividing cells, and (vi) vector-induced immunogenicity may be avoidable. In this review, we summarize recent improvements of mRNA gene delivery and discuss its opportunities for the usage in gene therapy.


The Journal of Allergy and Clinical Immunology | 2008

Toll-like receptor heterodimer variants protect from childhood asthma

Michael Kormann; Martin Depner; Dominik Hartl; Norman Klopp; Thomas Illig; Jerzy Adamski; Christian Vogelberg; Stephan K. Weiland; Erika von Mutius; Michael Kabesch

BACKGROUND Early exposure to microbes reduces the risk for asthma. Toll-like receptors (TLRs) represent a major group of receptors for the specific recognition of pathogen-associated molecular patterns of microbes capable of activating innate and adaptive immunity. OBJECTIVE Because TLRs can influence key events in the induction and perpetuation of asthma and atopy, we sought to determine whether genetic alterations in TLR genes affect asthma risk. METHODS We systematically evaluated putatively functional genetic variants in all 10 human TLR genes for their association with different asthma phenotypes in a case-control study (n = 1872) by using matrix-assisted laser desorption/ionization time-of-flight genotyping. For polymorphisms showing association with atopic asthma, effects on gene and protein expression were studied by means of RT-PCR and flow cytometry ex vivo. T-cell cytokine production was evaluated by means of ELISA after stimulation of the respective TLRs with specific ligands. RESULTS Protective effects on atopic asthma were identified for single nucleotide polymorphisms in TLR1 (odds ratio [OR], 0.54; 95% CI, 0.37-0.81; P = .002), TLR6 (OR, 0.54; 95% CI, 0.37-0.79; P = .003), and TLR10 (OR, 0.58; 95% CI, 0.39-0.86; P = .006), all capable of forming heterodimers with TLR2. Effects remained significant after correction for multiple comparisons. PBMCs of minor allele carriers showed increased levels of the respective TLR mRNA and proteins, augmented inflammatory responses, increased T(H)1 cytokine expression, and reduced T(H)2-associated IL-4 production after specific stimulation. CONCLUSION These results suggest that functional relevant TLR1 and TLR6 variants are directly involved in asthma development.


Journal of Immunology | 2008

TLR Expression on Neutrophils at the Pulmonary Site of Infection: TLR1/TLR2-Mediated Up-Regulation of TLR5 Expression in Cystic Fibrosis Lung Disease

Barbara Koller; Matthias Kappler; Phillip Latzin; Amit Gaggar; Marcus Schreiner; Sherkin Takyar; Michael Kormann; Michael Kabesch; Dirk Roos; Matthias Griese; Dominik Hartl

Cystic fibrosis (CF) lung disease is characterized by infection with Pseudomonas aeruginosa and a sustained accumulation of neutrophils. In this study, we analyzed 1) the expression of MyD88-dependent TLRs on circulating and airway neutrophils in P. aeruginosa-infected CF patients, P. aeruginosa-infected non-CF bronchiectasis patients, and noninfected healthy control subjects and 2) studied the regulation of TLR expression and functionality on neutrophils in vitro. TLR2, TLR4, TLR5, and TLR9 expression was increased on airway neutrophils compared with circulating neutrophils in CF and bronchiectasis patients. On airway neutrophils, TLR5 was the only TLR that was significantly higher expressed in CF patients compared with bronchiectasis patients and healthy controls. Studies using confocal microscopy and flow cytometry revealed that TLR5 was stored intracellularly in neutrophils and was mobilized to the cell surface in a protein synthesis-independent manner through protein kinase C activation or after stimulation with TLR ligands and cytokines characteristic of the CF airway microenvironment. The most potent stimulator of TLR5 expression was the bacterial lipoprotein Pam3CSK4. Ab-blocking experiments revealed that the effect of Pam3CSK4 was mediated through cooperation of TLR1 and TLR2 signaling. TLR5 activation enhanced the phagocytic capacity and the respiratory burst activity of neutrophils, which was mediated, at least partially, via a stimulation of IL-8 production and CXCR1 signaling. This study demonstrates a novel mechanism of TLR regulation in neutrophils and suggests a critical role for TLR5 in neutrophil-P. aeruginosa interactions in CF lung disease.


Journal of Immunology | 2013

Flagellin Induces Myeloid-Derived Suppressor Cells: Implications for Pseudomonas aeruginosa Infection in Cystic Fibrosis Lung Disease

Nikolaus Rieber; Alina Brand; Andreas Hector; Ute Graepler-Mainka; Michael Ost; Iris Schäfer; Irene Wecker; Davide Neri; Andreas Wirth; Lauren Mays; Sabine Zundel; Jörg Fuchs; Rupert Handgretinger; Martin Stern; Michael Hogardt; Gerd Döring; Joachim Riethmüller; Michael Kormann; Dominik Hartl

Pseudomonas aeruginosa persists in patients with cystic fibrosis (CF) and drives CF lung disease progression. P. aeruginosa potently activates the innate immune system, mainly mediated through pathogen-associated molecular patterns, such as flagellin. However, the host is unable to eradicate this flagellated bacterium efficiently. The underlying immunological mechanisms are incompletely understood. Myeloid-derived suppressor cells (MDSCs) are innate immune cells generated in cancer and proinflammatory microenvironments and are capable of suppressing T cell responses. We hypothesized that P. aeruginosa induces MDSCs to escape T cell immunity. In this article, we demonstrate that granulocytic MDSCs accumulate in CF patients chronically infected with P. aeruginosa and correlate with CF lung disease activity. Flagellated P. aeruginosa culture supernatants induced the generation of MDSCs, an effect that was 1) dose-dependently mimicked by purified flagellin protein, 2) significantly reduced using flagellin-deficient P. aeruginosa bacteria, and 3) corresponded to TLR5 expression on MDSCs in vitro and in vivo. Both purified flagellin and flagellated P. aeruginosa induced an MDSC phenotype distinct from that of the previously described MDSC-inducing cytokine GM-CSF, characterized by an upregulation of the chemokine receptor CXCR4 on the surface of MDSCs. Functionally, P. aeruginosa–infected CF patient ex vivo–isolated as well as flagellin or P. aeruginosa in vitro–generated MDSCs efficiently suppressed polyclonal T cell proliferation in a dose-dependent manner and modulated Th17 responses. These studies demonstrate that flagellin induces the generation of MDSCs and suggest that P. aeruginosa uses this mechanism to undermine T cell–mediated host defense in CF and other P. aeruginosa–associated chronic lung diseases.


Clinical and Experimental Immunology | 2013

Neutrophilic myeloid-derived suppressor cells in cord blood modulate innate and adaptive immune responses

Nikolaus Rieber; Christian Gille; N. Köstlin; Iris Schäfer; B. Spring; Michael Ost; H. Spieles; H. A. Kugel; M. Pfeiffer; V. Heininger; M. Alkhaled; Andreas Hector; Lauren Mays; Michael Kormann; Sabine Zundel; Jörg Fuchs; Rupert Handgretinger; Christian F. Poets; Dominik Hartl

Neonates show an impaired anti‐microbial host defence, but the underlying immune mechanisms are not understood fully. Myeloid‐derived suppressor cells (MDSCs) represent an innate immune cell subset characterized by their capacity to suppress T cell immunity. In this study we demonstrate that a distinct MDSC subset with a neutrophilic/granulocytic phenotype (Gr‐MDSCs) is highly increased in cord blood compared to peripheral blood of children and adults. Functionally, cord blood isolated Gr‐MDSCs suppressed T cell proliferation efficiently as well as T helper type 1 (Th1), Th2 and Th17 cytokine secretion. Beyond T cells, cord blood Gr‐MDSCs controlled natural killer (NK) cell cytotoxicity in a cell contact‐dependent manner. These studies establish neutrophilic Gr‐MDSCs as a novel immunosuppressive cell subset that controls innate (NK) and adaptive (T cell) immune responses in neonates. Increased MDSC activity in cord blood might serve as key fetomaternal immunosuppressive mechanism impairing neonatal host defence. Gr‐MDSCs in cord blood might therefore represent a therapeutic target in neonatal infections.


Allergy | 2009

Rare TLR2 mutations reduce TLR2 receptor function and can increase atopy risk.

Michael Kormann; Ruth Ferstl; Martin Depner; Norman Klopp; S. Spiller; Thomas Illig; Christian Vogelberg; E. von Mutius; Carsten J. Kirschning; Michael Kabesch

Background:  Common genetic variations in toll‐like receptor 2 (TLR2), an innate pathogen recognition receptor, may influence the development of atopic diseases. So far, very little is known about the role of rare TLR2 mutations in these diseases.


American Journal of Respiratory Cell and Molecular Biology | 2014

Airway Mucus Obstruction Triggers Macrophage Activation and Matrix Metalloproteinase 12–Dependent Emphysema

Joanna B. Trojanek; Amanda Cobos-Correa; Stefanie Diemer; Michael Kormann; Susanne C. Schubert; Zhe Zhou-Suckow; Raman Agrawal; Julia Duerr; Claudius J. Wagner; Jolanthe Schatterny; Stephanie Hirtz; Olaf Sommerburg; Dominik Hartl; Carsten Schultz; Marcus A. Mall

Whereas cigarette smoking remains the main risk factor for emphysema, recent studies in β-epithelial Na(+) channel-transgenic (βENaC-Tg) mice demonstrated that airway surface dehydration, a key pathophysiological mechanism in cystic fibrosis (CF), caused emphysema in the absence of cigarette smoke exposure. However, the underlying mechanisms remain unknown. The aim of this study was to elucidate mechanisms of emphysema formation triggered by airway surface dehydration. We therefore used expression profiling, genetic and pharmacological inhibition, Foerster resonance energy transfer (FRET)-based activity assays, and genetic association studies to identify and validate emphysema candidate genes in βENaC-Tg mice and patients with CF. We identified matrix metalloproteinase 12 (Mmp12) as a highly up-regulated gene in lungs from βENaC-Tg mice, and demonstrate that elevated Mmp12 expression was associated with progressive emphysema formation, which was reduced by genetic deletion and pharmacological inhibition of MMP12 in vivo. By using FRET reporters, we show that MMP12 activity was elevated on the surface of airway macrophages in bronchoalveolar lavage from βENaC-Tg mice and patients with CF. Furthermore, we demonstrate that a functional polymorphism in MMP12 (rs2276109) was associated with severity of lung disease in CF. Our results suggest that MMP12 released by macrophages activated on dehydrated airway surfaces may play an important role in emphysema formation in the absence of cigarette smoke exposure, and may serve as a therapeutic target in CF and potentially other chronic lung diseases associated with airway mucus dehydration and obstruction.


PLOS ONE | 2011

The chitinase-like protein YKL-40 modulates cystic fibrosis lung disease

Andreas Hector; Michael Kormann; Ines Mack; Philipp Latzin; Carmen Casaulta; Elisabeth Kieninger; Zhe Zhou; Ali Önder Yildirim; Alexander Bohla; Nikolaus Rieber; Matthias Kappler; Barbara Koller; Ernst Eber; Olaf Eickmeier; Stefan Zielen; Oliver Eickelberg; Matthias Griese; Marcus A. Mall; Dominik Hartl

The chitinase-like protein YKL-40 was found to be increased in patients with severe asthma and chronic obstructive pulmonary disease (COPD), two disease conditions featuring neutrophilic infiltrates. Based on these studies and a previous report indicating that neutrophils secrete YKL-40, we hypothesized that YKL-40 plays a key role in cystic fibrosis (CF) lung disease, a prototypic neutrophilic disease. The aim of this study was (i) to analyze YKL-40 levels in human and murine CF lung disease and (ii) to investigate whether YKL-40 single-nucleotide polymorphisms (SNPs) modulate CF lung disease severity. YKL-40 protein levels were quantified in serum and sputum supernatants from CF patients and control individuals. Levels of the murine homologue BRP-39 were analyzed in airway fluids from CF-like βENaC-Tg mice. YKL-40SNPs were analyzed in CF patients. YKL-40 levels were increased in sputum supernatants and in serum from CF patients compared to healthy control individuals. Within CF patients, YKL-40 levels were higher in sputum than in serum. BRP-39 levels were increased in airways fluids from βENaC-Tg mice compared to wild-type littermates. In both CF patients and βENaC-Tg mice, YKL-40/BRP-39 airway levels correlated with the severity of pulmonary obstruction. Two YKL-40 SNPs (rs871799 and rs880633) were found to modulate age-adjusted lung function in CF patients. YKL-40/BRP-39 levelsare increased in human and murine CF airway fluids, correlate with pulmonary function and modulate CF lung disease severity genetically. These findings suggest YKL-40 as a potential biomarker in CF lung disease.

Collaboration


Dive into the Michael Kormann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lauren Mays

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Norman Klopp

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar

Thomas Illig

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge