Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Koslowski is active.

Publication


Featured researches published by Michael Koslowski.


Cancer Research | 2012

Exploiting the Mutanome for Tumor Vaccination

John C. Castle; Sebastian Kreiter; Jan Diekmann; Martin Löwer; N. van de Roemer; J. de Graaf; Abderraouf Selmi; Mustafa Diken; Sebastian Boegel; Claudia Paret; Michael Koslowski; Andreas Kuhn; Cedrik M. Britten; Christoph Huber; Özlem Türeci; Ugur Sahin

Multiple genetic events and subsequent clonal evolution drive carcinogenesis, making disease elimination with single-targeted drugs difficult. The multiplicity of gene mutations derived from clonal heterogeneity therefore represents an ideal setting for multiepitope tumor vaccination. Here, we used next generation sequencing exome resequencing to identify 962 nonsynonymous somatic point mutations in B16F10 murine melanoma cells, with 563 of those mutations in expressed genes. Potential driver mutations occurred in classical tumor suppressor genes and genes involved in proto-oncogenic signaling pathways that control cell proliferation, adhesion, migration, and apoptosis. Aim1 and Trrap mutations known to be altered in human melanoma were included among those found. The immunogenicity and specificity of 50 validated mutations was determined by immunizing mice with long peptides encoding the mutated epitopes. One-third of these peptides were found to be immunogenic, with 60% in this group eliciting immune responses directed preferentially against the mutated sequence as compared with the wild-type sequence. In tumor transplant models, peptide immunization conferred in vivo tumor control in protective and therapeutic settings, thereby qualifying mutated epitopes that include single amino acid substitutions as effective vaccines. Together, our findings provide a comprehensive picture of the mutanome of B16F10 melanoma which is used widely in immunotherapy studies. In addition, they offer insight into the extent of the immunogenicity of nonsynonymous base substitution mutations. Lastly, they argue that the use of deep sequencing to systematically analyze immunogenicity mutations may pave the way for individualized immunotherapy of cancer patients.


Cancer Research | 2010

Intranodal Vaccination with Naked Antigen-Encoding RNA Elicits Potent Prophylactic and Therapeutic Antitumoral Immunity

Sebastian Kreiter; Abderraouf Selmi; Mustafa Diken; Michael Koslowski; Cedrik M. Britten; Christoph Huber; Özlem Türeci; Ugur Sahin

Although naked antigen-encoding RNA has entered clinical testing, basic knowledge on how to apply this promising novel vaccine format is still pending. By comparing different administration routes, we observed surprisingly potent antigen-specific T-cell immunity upon intranodal injection of naked antigen-encoding RNA. RNA was selectively uptaken by resident dendritic cells, propagated a T-cell attracting and stimulatory intralymphatic milieu, and led to efficient expansion of antigen-specific CD8+ as well as CD4+ T cells. By intranodal treatment of mice with repeated cycles of RNA, we achieved de novo priming of naïve T cells, which became potent cytolytic effectors capable of homing to primary and secondary lymphatic tissues as well as memory T cells. In tumor-bearing mice intralymphatic RNA vaccination elicited protective and therapeutic antitumor immune responses, resulting in a remarkable survival benefit as compared with other treatment regimens. This is the first report of strong systemic antigen-specific Th1-type immunity and cancer cure achieved with naked antigen-encoding RNA in preclinical animal models.


Clinical Cancer Research | 2008

Claudin-18 Splice Variant 2 Is a Pan-Cancer Target Suitable for Therapeutic Antibody Development

Ugur Sahin; Michael Koslowski; Karl Dhaene; Dirk Usener; Gunda Brandenburg; Gerhard Seitz; Christoph Huber; Özlem Türeci

Purpose: Antibody-based cancer therapies have emerged as the most promising therapeutics in oncology. The purpose of this study was to discover novel targets for therapeutic antibodies in solid cancer. Experimental Design: We combined data mining and wet-bench experiments to identify strictly gastrocyte lineage–specific cell surface molecules and to validate them as therapeutic antibody targets. Results: We identified isoform 2 of the tight junction molecule claudin-18 (CLDN18.2) as a highly selective cell lineage marker. Its expression in normal tissues is strictly confined to differentiated epithelial cells of the gastric mucosa, but it is absent from the gastric stem cell zone. CLDN18.2 is retained on malignant transformation and is expressed in a significant proportion of primary gastric cancers and the metastases thereof. In addition to its orthotopic expression, we found frequent ectopic activation of CLDN18.2 in pancreatic, esophageal, ovarian, and lung tumors, correlating with distinct histologic subtypes. The activation of CLDN18.2 depends on the binding of the transcription factor cyclic AMP–responsive element binding protein to its unmethylated consensus site. Most importantly, we were able to raise monoclonal antibodies that bind to CLDN18.2 but not to its lung-specific splice variant and recognize the antigen on the surface of cancer cells. Conclusions: Its highly restricted expression pattern in normal tissues, its frequent ectopic activation in a diversity of human cancers, and the ability to specifically target this molecule at the cell surface of tumor cells qualify CLDN18.2 as a novel, highly attractive pan-cancer target for the antibody therapy of epithelial tumors.


Cancer Research | 2007

A Placenta-Specific Gene Ectopically Activated in Many Human Cancers Is Essentially Involved in Malignant Cell Processes

Michael Koslowski; Ugur Sahin; Rita Mitnacht-Kraus; Gerhard Seitz; Christoph Huber; Özlem Türeci

The identification and functional characterization of tumor-specific genes is a prerequisite for the development of targeted cancer therapies. Using an integrated data mining and experimental validation approach for the discovery of new targets for antibody therapy of cancer, we identified PLAC1. PLAC1 is a placenta-specific gene with no detectable expression in any other normal human tissue. However, it is frequently aberrantly activated and highly expressed in a variety of tumor types, in particular breast cancer. RNAi-mediated silencing of PLAC1 in MCF-7 and BT-549 breast cancer cells profoundly impairs motility, migration, and invasion and induces a G1-S cell cycle block with nearly complete abrogation of proliferation. Knockdown of PLAC1 is associated with decreased expression of cyclin D1 and reduced phosphorylation of AKT kinase. Moreover, PLAC1 is localized on the surface of cancer cells and is accessible for antibodies which antagonize biological functions of this molecule. These features, in summary, make PLAC1 an attractive candidate for targeted immunotherapeutic approaches.


Cancer Research | 2004

Frequent Nonrandom Activation of Germ-Line Genes in Human Cancer

Michael Koslowski; Carolin Bell; Gerhard Seitz; Hans-Anton Lehr; Klaus Roemer; Horst Müntefering; Christoph Huber; Ugur Sahin; Özlem Türeci

The growing class of cancer/germ-line genes is characterized by a unique expression pattern with transcription restricted to germ cells and cancer cells. It is not known which fraction of germ-line genes is ectopically activated in tumor cells and whether this fraction displays common features as compared with strictly germ-line genes remaining silent in cancer. Using an unbiased genome-wide scanning approach, representative samples of both cancer/germ-line genes as well as strictly germ-line-specific genes were determined. Comparative analysis disclosed highly significant diametric characteristics for these two categories of genes with regard to sex specificity, developmental stage of physiological expression during gametogenesis, chromosomal localization, and epigenetic regulation of expression. Our findings provide class predictors for germ cell-specific gene activation in cancer. The identification of highly congruent expression patterns in cancer and in DNA methyltransferase-deficient cells suggests an underlying common epigenetic mechanism for activation of germ-line genes in cancer.


Oncogene | 2002

A novel tumour associated leucine zipper protein targeting to sites of gene transcription and splicing

Özlem Türeci; Ugur Sahin; Michael Koslowski; Benedikt Buss; Carolin Bell; Pia Ballweber; Carsten Zwick; Thomas Eberle; Margit Zuber; Carlos Villena-Heinsen; Gerhard Seitz; Michael Pfreundschuh

We describe here the definition and characterization of antigen CT-8/HOM-TES-85 encoded by a previously unknown gene and identified by serological expression screening using antibodies from a seminoma patient. Intriguingly, the leucine zipper region of CT-8/HOM-TES-85 shows an atypical amphipathy with clusters of hydrophobic residues that is exclusively shared by the N-myc proto-oncogene. CT-8/HOM-TES-85 gene is tightly silenced in normal tissues except for testis. However, it is frequently activated in human neoplasms of different types including lung cancer, ovarian cancer, melanoma and glioma. Endogenous as well as heterogeneously expressed CT-8/HOM-TES-85 targets predominantly to the nucleus forming a distinctive speckled pattern of nuclear dots arranged in macromolecular structures. By co-localization studies these speckles were identified as loci of transcriptional activity and splicing, suggesting that CT-8/HOM-TES-85 may be involved in these processes. The aberrant expression of CT-8/HOM-TES-85 in human neoplasms might therefore be involved in cancer associated alterations of transcriptional or post-transcriptional processes and thus may disclose new mechanisms involved in the manifestation of the cancer phenotype.


Cancer Research | 2011

FLT3 Ligand Enhances the Cancer Therapeutic Potency of Naked RNA Vaccines

Sebastian Kreiter; Mustafa Diken; Abderraouf Selmi; Jan Diekmann; Sebastian Attig; Yves Hüsemann; Michael Koslowski; Christoph Huber; Özlem Türeci; Ugur Sahin

Intranodal immunization with antigen-encoding naked RNA may offer a simple and safe approach to induce antitumor immunity. RNA taken up by nodal dendritic cells (DC) coactivates toll-like receptor (TLR) signaling that will prime and expand antigen-specific T cells. In this study, we show that RNA vaccination can be optimized by coadministration of the DC-activating Fms-like tyrosine kinase 3 (FLT3) ligand as an effective adjuvant. Systemic administration of FLT3 ligand prior to immunization enhanced priming and expansion of antigen-specific CD8(+) T cells in lymphoid organs, T-cell homing into melanoma tumors, and therapeutic activity of the intranodal RNA. Unexpectedly, plasmacytoid DCs (pDC) were found to be essential for the adjuvant effect of FLT3 ligand and they were systemically expanded together with conventional DCs after treatment. In response to FLT3 ligand, pDCs maintained an immature phenotype, internalized RNA, and presented the RNA-encoded antigen for efficient induction of antigen-specific CD8(+) T-cell responses. Coadministration of FLT3 ligand with RNA vaccination achieved remarkable cure rates and survival of mice with advanced melanoma. Our findings show how to improve the simple and safe strategy offered by RNA vaccines for cancer immunotherapy.


Oncogene | 2011

Tumor-associated CpG demethylation augments hypoxia-induced effects by positive autoregulation of HIF-1α

Michael Koslowski; U Luxemburger; Özlem Türeci; Ugur Sahin

Hypoxia-inducible factor 1α (HIF-1α) is frequently overexpressed in human cancers and controls the expression of several genes that have been implicated in tumor growth and progression. Activity of HIF-1α in cancer cells is regulated at the transcriptional, translational and posttranslational level by multiple inter- and coacting molecular pathways. In this report, we reveal for the first time that tumor-associated CpG demethylation facilitates positive autoregulation of HIF-1α, resulting in amplification of hypoxia-induced transactivation of HIF-1α target genes. The HIF-1α promoter harbors a hypoxia response element that is normally repressed by methylation of a CpG dinucleotide located in the core element. In colon cancer cell lines and in primary colon cancer specimens, however, we found frequent aberrant demethylation of this element, enabling binding of HIF-1α to its own promoter resulting in autotransactivation of HIF-1α expression. Our results provide novel and highly unexpected insights into the complexity of HIF-1α regulation in cancer cells and implicate that tumor-associated CpG demethylation augments HIF-1α-mediated effects on malignant cell growth.


Cancer Research | 2008

MS4A12 is a colon-selective store-operated calcium channel promoting malignant cell processes.

Michael Koslowski; Ugur Sahin; Karl Dhaene; Christoph Huber; Özlem Türeci

Using a data mining approach for the discovery of new targets for antibody therapy of colon cancer, we identified MS4A12, a sequence homologue of CD20. We show that MS4A12 is a cell surface protein. Expression analysis and immunohistochemistry revealed MS4A12 to be a colonic epithelial cell lineage gene confined to the apical membrane of colonocytes with strict transcriptional repression in all other normal tissue types. Expression is maintained upon malignant transformation in 63% of colon cancers. Ca(2+) flux analyses disclosed that MS4A12 is a novel component of store-operated Ca(2+) entry in intestinal cells. Using RNAi-mediated gene silencing, we show that loss of MS4A12 in LoVo colon cancer cells attenuates epidermal growth factor receptor-mediated effects. In particular, proliferation, cell motility, and chemotactic invasion of cells are significantly impaired. Cancer cells expressing MS4A12, in contrast, are sensitized and respond to lower concentrations of epidermal growth factor. In summary, these findings have implications for both the physiology of colonic epithelium as well as for the biology and treatment of colon cancer.


International Journal of Cancer | 2006

Expression of multiple epigenetically regulated cancer/germline genes in nonsmall cell lung cancer

Carolin Grunwald; Michael Koslowski; Tülin Arsiray; Karl Dhaene; Marleen Praet; Anja Victor; Alicia Morresi-Hauf; Michael Lindner; Bernward Passlick; Hans-Anton Lehr; Stephan C. Schäfer; Gerhard Seitz; Christoph Huber; Ugur Sahin; Özlem Türeci

Cancer/germline (CG) antigens represent promising targets for widely applicable mono‐ and multiantigen cancer vaccines for nonsmall cell lung cancer (NSCLC). Since little is known about their composite expression in this tumor type, we analyzed 7 CG genes (MAGE‐A3, NY‐ESO‐1, LAGE‐1, BRDT, HOM‐TES‐85, TPX‐1 and LDHC) in 102 human NSCLC specimens. About 81% of NSCLC express at least 1 and half of the specimen at least 2 CG genes. Activation of most of these genes occurs more frequently in squamous cell cancer than in adenocarcinomas. Even though we found all genes but one to be regulated by genomic methylation, not all of them are co‐expressed. In particular, combining CG genes not localized on the X‐chromosome may provide effective treatment for an extended number of patients.

Collaboration


Dive into the Michael Koslowski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge