Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Kotik is active.

Publication


Featured researches published by Michael Kotik.


Journal of Biotechnology | 2009

Novel genes retrieved from environmental DNA by polymerase chain reaction: Current genome-walking techniques for future metagenome applications

Michael Kotik

Environmental DNA is an extremely rich source of genes encoding enzymes with novel biocatalytic activities. To tap this source, function-based and sequence-based strategies have been established to isolate, clone, and express these novel metagenome-derived genes. Sequence-based strategies, which rely on PCR with consensus primers and genome walking, represent an efficient and inexpensive alternative to activity-based screening of recombinant strains harbouring fragments of environmental DNA. This review covers the diverse array of genome-walking techniques, which were originally developed for genomic DNA and currently are also used for PCR-based recovery of entire genes from the metagenome. These sequence-based gene mining methods appear to offer a powerful tool for retrieving from the metagenome novel genes encoding biocatalysts with potential applications in biotechnology.


Science of The Total Environment | 2013

Bacterial communities in tetrachloroethene-polluted groundwaters: A case study

Michael Kotik; Anna Davidová; Jana Voříšková; Petr Baldrian

The compositions of bacterial groundwater communities of three sites contaminated with chlorinated ethenes were analyzed by pyrosequencing their 16S rRNA genes. For each location, the entire and the active bacterial populations were characterized by independent molecular analysis of the community DNA and RNA. The sites were selected to cover a broad range of different environmental conditions and contamination levels, with tetrachloroethene (PCE) and trichloroethene (TCE) being the primary contaminants. Before sampling the biomass, a long-term monitoring of the polluted locations revealed high concentrations of cis-1,2-dichloroethene (cDCE) and vinyl chloride (VC), which are toxic by-products of the incomplete bacterial degradation of PCE and TCE. The applied pyrosequencing technique enabled known dechlorinators to be identified at a very low detection level (<0.25%) without compromising the detailed analysis of the entire bacterial community of these sites. The study revealed that only a few species dominated the bacterial communities, with Albidiferax ferrireducens being the only highly prominent member found at all three sites. Only a limited number of OTUs with abundances of up to 1% and high sequence identities to known dechlorinating microorganisms were retrieved from the RNA pools of the two highly contaminated sites. The dechlorinating consortium was likely to be comprised of cDCE-assimilating bacteria (Polaromonas spp.), anaerobic organohalide respirers (mainly Geobacter spp.), and Burkholderia spp. involved in cometabolic dechlorination processes, together with methylotrophs (Methylobacter spp.). The deep sequencing results suggest that the indigenous dechlorinating consortia present at the investigated sites can be used as a starting point for future bioremediation activities by stimulating their anaerobic and aerobic chloroethene degradation capacities (i.e. reductive dechlorination, and metabolic and cometabolic oxidation).


Chemosphere | 2016

Biodegradation of phenolic compounds by Basidiomycota and its phenol oxidases: A review.

Ludmila Martínková; Michael Kotik; E. Marková; L. Homolka

The phylum Basidiomycota include organisms with enormous bioremediation potential. A variety of processes were proposed at the lab scale for using these fungi and their phenol oxidases in the degradation of phenolics. Here we present a survey of this topic using literature published mostly over the last 10 years. First, the sources of the enzymes are summarized. The laccase and tyrosinase were mainly from Trametes versicolor and Agaricus bisporus, respectively. Recently, however, new promising wild-type producers of the enzymes have emerged and a number of recombinant strains were also constructed, based mainly on yeasts or Aspergillus strains as hosts. The next part of the study summarizes the enzyme and whole-cell applications for the degradation of phenols, polyphenols, cresols, alkylphenols, naphthols, bisphenols and halogenated (bis)phenols in model mixtures or real wastewaters from the food, paper and coal industries, or municipal and hospital sewage. The enzymes were applied as free (crude or purified) enzymes or as enzymes immobilized in various supports or CLEAs, and optionally recycled or used in continuous mode. Alternatively, growing cultures or harvested mycelia were used instead. The products, which were characterized as quinones and their polymers in some cases, could be eliminated by filtration, flocculation or adsorption onto chitosan. The purity of a treated wastewater was monitored using a sensitive aquatic organism. It is concluded that low-cost sources of these enzymes should be searched for and the benefits of enzymatic, biological and physico-chemical methods could be combined to make the processes fit for industrial use.


BMC Biotechnology | 2011

Heterologous expression, purification and characterization of nitrilase from Aspergillus niger K10

Ondřej Kaplan; Karel Bezouška; Ondřej Plíhal; Rüdiger Ettrich; Natallia Kulik; Ondřej Vaněk; Daniel Kavan; Oldřich Benada; Anna Malandra; Ondřej Šveda; Alicja B. Veselá; Anna Rinágelová; Kristýna Slámová; Maria Cantarella; Jürgen Felsberg; Jarmila Dušková; Jan Dohnálek; Michael Kotik; Vladimír Křen; Ludmila Martínková

BackgroundNitrilases attract increasing attention due to their utility in the mild hydrolysis of nitriles. According to activity and gene screening, filamentous fungi are a rich source of nitrilases distinct in evolution from their widely examined bacterial counterparts. However, fungal nitrilases have been less explored than the bacterial ones. Nitrilases are typically heterogeneous in their quaternary structures, forming short spirals and extended filaments, these features making their structural studies difficult.ResultsA nitrilase gene was amplified by PCR from the cDNA library of Aspergillus niger K10. The PCR product was ligated into expression vectors pET-30(+) and pRSET B to construct plasmids pOK101 and pOK102, respectively. The recombinant nitrilase (Nit-ANigRec) expressed in Escherichia coli BL21-Gold(DE3)(pOK101/pTf16) was purified with an about 2-fold increase in specific activity and 35% yield. The apparent subunit size was 42.7 kDa, which is approx. 4 kDa higher than that of the enzyme isolated from the native organism (Nit-ANigWT), indicating post-translational cleavage in the enzymes native environment. Mass spectrometry analysis showed that a C-terminal peptide (Val327 - Asn356) was present in Nit-ANigRec but missing in Nit-ANigWT and Asp298-Val313 peptide was shortened to Asp298-Arg310 in Nit-ANigWT. The latter enzyme was thus truncated by 46 amino acids. Enzymes Nit-ANigRec and Nit-ANigWT differed in substrate specificity, acid/amide ratio, reaction optima and stability. Refolded recombinant enzyme stored for one month at 4°C was fractionated by gel filtration, and fractions were examined by electron microscopy. The late fractions were further analyzed by analytical centrifugation and dynamic light scattering, and shown to consist of a rather homogeneous protein species composed of 12-16 subunits. This hypothesis was consistent with electron microscopy and our modelling of the multimeric nitrilase, which supports an arrangement of dimers into helical segments as a plausible structural solution.ConclusionsThe nitrilase from Aspergillus niger K10 is highly homologous (≥86%) with proteins deduced from gene sequencing in Aspergillus and Penicillium genera. As the first of these proteins, it was shown to exhibit nitrilase activity towards organic nitriles. The comparison of the Nit-ANigRec and Nit-ANigWT suggested that the catalytic properties of nitrilases may be changed due to missing posttranslational cleavage of the former enzyme. Nit-ANigRec exhibits a lower tendency to form filaments and, moreover, the sample homogeneity can be further improved by in vitro protein refolding. The homogeneous protein species consisting of short spirals is expected to be more suitable for structural studies.


Journal of Biotechnology | 2011

Laboratory evolution of an epoxide hydrolase - towards an enantioconvergent biocatalyst.

Michael Kotik; Alain Archelas; Veronika Faměrová; Pavla Oubrechtová; Vladimír Křen

We performed a laboratory evolution study with the epoxide hydrolase from Aspergillus niger M200. This enzyme exhibits no enantioconvergence with the substrates styrene oxide or para-chlorostyrene oxide, i.e. racemic vicinal diols are produced from the racemic substrates. After saturation mutagenesis, screening by chiral gas chromatography revealed enzyme variants with improved enantioconvergence as manifested by an increased enantiomeric excess of the diol product. Nine amino acid exchanges accumulated in the active site and the substrate access tunnel over the course of 5 productive rounds of iterative saturation mutagenesis, resulting in an enantioconvergent epoxide hydrolase variant. The final mutant enzyme transformed racemic styrene oxide and para-chlorostyrene oxide to (R)-diol enantiomers with enantiomeric excesses of 70%. Sequential bi-enzymatic reactions using the wild-type EH and/or its evolved variants enabled preparation of the chiral building blocks (R)-phenyl-1,2-ethanediol and (R)-para-chlorophenyl-1,2-ethanediol from inexpensive racemic epoxides with enantiomeric excesses of 91% and 88%, respectively.


Journal of Microbiological Methods | 2012

Sequence diversity in haloalkane dehalogenases, as revealed by PCR using family-specific primers.

Michael Kotik; Veronika Faměrová

Haloalkane dehalogenases (HLDs) are hydrolytic enzymes that cleave carbon-halogen bonds in various halogenated compounds. Interest initially grew in HLDs as biocatalysts for bioremediation and later for biotransformation applications; each specific HLD within the HLD family has its own substrate specificity, enantioselectivity and product inhibition characteristics. We developed degenerate oligonucleotide primers for HLD-encoding genes and used these to PCR-amplify large hld gene fragments using genomic DNA from the microbial community of a chlorinated-solvent-contaminated aquifer as a template. An analysis of small subunit ribosomal RNA genes revealed a high complexity in the eubacterial population, dominated by α-, β- and γ-Proteobacteria, and Acidobacteria. Using HLD-family-specific primers, we also retrieved transcribed hld homologues from the microbial consortium of this contaminated site. The DNA-derived hld sequences were phylogenetically broadly distributed over both HLD subclasses I and II. Most hld sequences of the environmental RNA data set clustered in three groups within both HLD subclasses, indicating that a considerable proportion of the microbial consortium carrying hld genes was actively involved in haloalkane dehalogenation. The small sequence variation in hld genes and transcripts within each HLD cluster inferred the presence of a substantial pool of highly related HLD genes. The sequence variability appeared to be unevenly distributed over the HLD genes, however, with no apparent preference for a particular protein segment or domain.


Applied Microbiology and Biotechnology | 2016

Bacteria as source of diglycosidase activity: Actinoplanes missouriensis produces 6-O-α-L-rhamnosyl-β-D-glucosidase active on flavonoids.

Bárbara D. Neher; Laura S. Mazzaferro; Michael Kotik; Jorge Oyhenart; Petr Halada; Vladimír Křen; Javier D. Breccia

Bacteria represent an underexplored source of diglycosidases. Twenty-five bacterial strains from the genera Actinoplanes, Bacillus, Corynebacterium, Microbacterium, and Streptomyces were selected for their ability to grow in diglycosylated flavonoids-based media. The strains Actinoplanes missouriensis and Actinoplanes liguriae exhibited hesperidin deglycosylation activity (6-O-α-L-rhamnosyl-β-D-glucosidase activity, EC 3.2.1.168), which was 3 to 4 orders of magnitude higher than the corresponding monoglycosidase activities. The diglycosidase production was confirmed in A. missouriensis by zymographic assays and NMR analysis of the released disaccharide, rutinose. The gene encoding the 6-O-α-L-rhamnosyl-β-D-glucosidase was identified in the genome sequence of A. missouriensis 431T (GenBank accession number BAL86042.1) and functionally expressed in Escherichia coli. The recombinant protein hydrolyzed hesperidin and hesperidin methylchalcone, but not rutin, which indicates its specificity for 7-O-rutinosylated flavonoids. The protein was classified into the glycoside hydrolase family 55 (GH55) in contrast to the known eukaryotic diglycosidases, which belong to GH1 and GH5. These findings demonstrate that organisms other than plants and filamentous fungi can contribute to an expansion of the diglycosidase toolbox.


Archives of Biochemistry and Biophysics | 2016

Epoxide hydrolase-catalyzed enantioselective conversion of trans-stilbene oxide: Insights into the reaction mechanism from steady-state and pre-steady-state enzyme kinetics.

Alain Archelas; Wei Zhao; Bruno Faure; Gilles Iacazio; Michael Kotik

A detailed kinetic study based on steady-state and pre-steady-state measurements is described for the highly enantioselective epoxide hydrolase Kau2. The enzyme, which is a member of the α/β-hydrolase fold family, preferentially reacts with the (S,S)-enantiomer of trans-stilbene oxide (TSO) with an E value of ∼200. The enzyme follows a classical two-step catalytic mechanism with formation of an alkyl-enzyme intermediate in the first step and hydrolysis of this intermediate in a rate-limiting second step. Tryptophan fluorescence quenching during TSO conversion appears to correlate with alkylation of the enzyme. The steady-state data are consistent with (S,S) and (R,R)-TSO being two competing substrates with marked differences in k(cat) and K(M) values. The high enantiopreference of the epoxide hydrolase is best explained by pronounced differences in the second-order alkylation rate constant (k2/K(S)) and the alkyl-enzyme hydrolysis rate k3 between the (S,S) and (R,R)-enantiomers of TSO. Our data suggest that during conversion of (S,S)-TSO the two active site tyrosines, Tyr(157) and Tyr(259), serve mainly as electrophilic catalysts in the alkylation half-reaction, polarizing the oxirane oxygen of the bound epoxide through hydrogen bond formation, however, without fully donating their hydrogens to the forming alkyl-enzyme intermediate.


International Journal of Biological Macromolecules | 2018

Overproduction and characterization of the first enzyme of a new aldoxime dehydratase family in Bradyrhizobium sp.

Robert Rädisch; Martin Chmátal; Lenka Rucká; Petr Novotný; Lucie Petrásková; Petr Halada; Michael Kotik; Miroslav Pátek; Ludmila Martínková

Almost 100 genes within the genus Bradyrhizobium are known to potentially encode aldoxime dehydratases (Oxds), but none of the corresponding proteins have been characterized yet. Aldoximes are natural substances involved in plant defense and auxin synthesis, and Oxds are components of enzymatic cascades enabling bacteria to transform, utilize and detoxify them. The aim of this work was to characterize a representative of the highly conserved Oxds in Bradyrhizobium spp. which include both plant symbionts and members of the soil communities. The selected oxd gene from Bradyrhizobium sp. LTSPM299 was expressed in Escherichia coli, and the corresponding gene product (OxdBr1; GenBank: WP_044589203) was obtained as an N-His6-tagged protein (monomer, 40.7 kDa) with 30-47% identity to Oxds characterized previously. OxdBr1 was most stable at pH ca. 7.0-8.0 and at up to 30 °C. As substrates, the enzyme acted on (aryl)aliphatic aldoximes such as E/Z-phenylacetaldoxime, E/Z-2-phenylpropionaldoxime, E/Z-3-phenylpropionaldoxime, E/Z-indole-3-acetaldoxime, E/Z-propionaldoxime, E/Z-butyraldoxime, E/Z-valeraldoxime and E/Z-isovaleraldoxime. Some of the reaction products of OxdBr1 are substrates of nitrilases occurring in the same genus. Regions upstream of the oxd gene contained genes encoding a putative aliphatic nitrilase and its transcriptional activator, indicating the participation of OxdBr1 in the metabolic route from aldoximes to carboxylic acids.


Biotechnology and Applied Biochemistry | 2018

Enzyme-mediated transglycosylation of rutinose (6-O-α-l-rhamnosyl-d-glucose) to phenolic compounds by a diglycosidase from Acremonium sp. DSM 24697: Phenolic-Rutinoside Synthesis

Laura S. Mazzaferro; Gisela Weiz; Lucas Braun; Michael Kotik; Helena Pelantová; Vladimír Křen; Javier D. Breccia

The structure of the carbohydrate moiety of a natural phenolic glycoside can have a significant effect on the molecular interactions and physicochemical and pharmacokinetic properties of the entire compound, which may include anti‐inflammatory and anticancer activities. The enzyme 6‐O‐α‐rhamnosyl‐β‐glucosidase (EC 3.2.1.168) has the capacity to transfer the rutinosyl moiety (6‐O‐α‐l‐rhamnopyranosyl‐β‐d‐glucopyranose) from 7‐O‐rutinosylated flavonoids to hydroxylated organic compounds. This transglycosylation reaction was optimized using hydroquinone (HQ) and hesperidin as rutinose acceptor and donor, respectively. Since HQ undergoes oxidation in a neutral to alkaline aqueous environment, the transglycosylation process was carried out at pH values ≤6.0. The structure of 4‐hydroxyphenyl‐β‐rutinoside was confirmed by NMR, that is, a single glycosylated product with a free hydroxyl group was formed. The highest yield of 4‐hydroxyphenyl‐β‐rutinoside (38%, regarding hesperidin) was achieved in a 2‐h process at pH 5.0 and 30 °C, with 36 mM OH‐acceptor and 5% (v/v) cosolvent. Under the same conditions, the enzyme synthesized glycoconjugates of various phenolic compounds (phloroglucinol, resorcinol, pyrogallol, catechol), with yields between 12% and 28% and an apparent direct linear relationship between the yield and the pKa value of the aglycon. This work is a contribution to the development of convenient and sustainable processes for the glycosylation of small phenolic compounds.

Collaboration


Dive into the Michael Kotik's collaboration.

Top Co-Authors

Avatar

Alain Archelas

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Ludmila Martínková

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Vladimír Křen

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Gilles Iacazio

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Václav Štěpánek

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Helena Marešová

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Petr Halada

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge