Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Koval is active.

Publication


Featured researches published by Michael Koval.


Journal of Biological Chemistry | 2002

Targeted Gap Junction Protein Constructs Reveal Connexin-specific Differences in Oligomerization

Jayasri Das Sarma; Fushan Wang; Michael Koval

To define further the mechanisms of gap junction protein (connexin (Cx)) oligomerization without pharmacologic disruption, we have examined the transport and assembly of connexin constructs containing C-terminal di-lysine-based endoplasmic reticulum (ER) (HKKSL) or ER-Golgi intermediate compartment (AKKFF) targeting sequences. By immunofluorescence microscopy, Cx43-HKKSL transiently transfected into HeLa cells showed a predominantly ER localization, although Cx43-AKKFF was localized to the perinuclear region of the cell. Sucrose gradient analysis of Triton X-100-solubilized connexins showed that either Cx43-HKKSL or Cx43-AKKFF expressed alone by HeLa cells was maintained as an apparent monomer. In contrast to Cx43-HKKSL, Cx32-HKKSL was maintained in the ER as stable hexamers, consistent with the notion that Cx32 and Cx43 oligomerization occur in distinct intracellular compartments. Furthermore, Cx43-HKKSL and Cx43-AKKFF inhibited trafficking of Cx43 and Cx46 to the plasma membrane. The inhibitory effect was because of the formation of mixed oligomers between Cx43-HKKSL or Cx43-AKKF and wild type Cx43 or Cx46. Taken together, these results suggest that Cx43-HKKSL and Cx43-AKKFF recirculate through compartments where oligomerization occurs and may be maintained as apparent monomers by a putative Cx43-specific quality control mechanism.


Journal of NeuroVirology | 2002

Enhanced green fluorescent protein expression may be used to monitor murine coronavirus spread in vitro and in the mouse central nervous system

Jayasri Das Sarma; Esther Scheen; Su-Hun Seo; Michael Koval; Susan R. Weiss

Targeted recombination was used to select mouse hepatitis virus isolates with stable and efficient expression of the gene encoding the enhanced green fluorescent protein (EGFP). The EGFP gene was inserted into the murine coronavirus genome in place of the nonessential gene 4. These viruses expressed the EGFP gene from an mRNA of slightly slower electrophoretic mobility than mRNA 4. EGFP protein was detected on a Western blot of infected cell lysates and EGFP activity (fluorescence) was visualized by microscopy in infected cells and in viral plaques. Expression of EGFP remained stable through at least six passages in tissue culture and during acute infection in the mouse central nervous system. These viruses replicated with similar kinetics and to similar final extents as wild-type virus both in tissue culture and in the mouse central nervous system (CNS). They caused encephalitis and demyelination in animals as wild-type virus; however, they were somewhat attenuated in virulence. Isogenic EGFP-expressing viruses that differ only in the spike gene and express either the spike gene of the highly neurovirulent MHV-4 strain or the more weakly neurovirulent MHV-A59 strain were compared; the difference in virulence and patterns of spread of viral antigen reflected the differences between parental viruses expressing each of these spike genes. Thus, EGFP-expressing viruses will be useful in the studies of murine coronavirus pathogenesis in mice.


American Journal of Physiology-lung Cellular and Molecular Physiology | 1999

Phenotypic control of gap junctional communication by cultured alveolar epithelial cells

Valsamma Abraham; Michael L. Chou; Kristine Debolt; Michael Koval

We examined phenotype-specific changes in gap junction protein [connexin (Cx)] expression and function by cultured rat alveolar type II cells. Type II cells cultured on extracellular matrix in medium containing keratinocyte growth factor (KGF) and 2% fetal bovine serum (FBS; KGF/2) retained expression of surfactant protein C and the 180-kDa lamellar body membrane protein (lbm180). These markers were lost when cells were cultured in medium containing 10% FBS (MEM/10). With RT-PCR, cells cultured in MEM/10 showed transient increases in Cx43 and Cx46 mRNA expression, whereas Cx32 and Cx26 decreased and Cx30.3 and Cx37 were unchanged. Transient changes in Cx32, Cx43, and Cx46 protein expression were confirmed by immunoblot. In contrast, cells cultured in KGF/2 retained expression of Cx32 and showed increased expression of Cx30.3 and Cx46 mRNAs, compared with that in day 0 cells. With immunofluorescence microscopy, Cx32 and Cx43 were at the plasma membrane of cells grown in KGF/2, whereas Cx46 was exclusively intracellular. Type II cells cultured in MEM/10 showed approximately 3- to 4-fold more intercellular transfer of microinjected lucifer yellow through gap junctions than cells grown in 2% FBS. Thus type II cells dynamically alter gap junctional communication, and distinct alveolar epithelial cell phenotypes express different connexins.We examined phenotype-specific changes in gap junction protein [connexin (Cx)] expression and function by cultured rat alveolar type II cells. Type II cells cultured on extracellular matrix in medium containing keratinocyte growth factor (KGF) and 2% fetal bovine serum (FBS; KGF/2) retained expression of surfactant protein C and the 180-kDa lamellar body membrane protein (lbm180). These markers were lost when cells were cultured in medium containing 10% FBS (MEM/10). With RT-PCR, cells cultured in MEM/10 showed transient increases in Cx43 and Cx46 mRNA expression, whereas Cx32 and Cx26 decreased and Cx30.3 and Cx37 were unchanged. Transient changes in Cx32, Cx43, and Cx46 protein expression were confirmed by immunoblot. In contrast, cells cultured in KGF/2 retained expression of Cx32 and showed increased expression of Cx30.3 and Cx46 mRNAs, compared with that in day 0 cells. With immunofluorescence microscopy, Cx32 and Cx43 were at the plasma membrane of cells grown in KGF/2, whereas Cx46 was exclusively intracellular. Type II cells cultured in MEM/10 showed ∼3- to 4-fold more intercellular transfer of microinjected lucifer yellow through gap junctions than cells grown in 2% FBS. Thus type II cells dynamically alter gap junctional communication, and distinct alveolar epithelial cell phenotypes express different connexins.


The Journal of Neuroscience | 2011

Prefrontal Cortex Deactivation in Macaques Alters Activity in the Superior Colliculus and Impairs Voluntary Control of Saccades

Michael Koval; Stephen G. Lomber; Stefan Everling

The cognitive control of action requires both the suppression of automatic responses to sudden stimuli and the generation of behavior specified by abstract instructions. Though patient, functional imaging and neurophysiological studies have implicated the dorsolateral prefrontal cortex (dlPFC) in these abilities, the mechanism by which the dlPFC exerts this control remains unknown. Here we examined the functional interaction of the dlPFC with the saccade circuitry by deactivating area 46 of the dlPFC and measuring its effects on the activity of single superior colliculus neurons in monkeys performing a cognitive saccade task. Deactivation of the dlPFC reduced preparatory activity and increased stimulus-related activity in these neurons. These changes in neural activity were accompanied by marked decreases in task performance as evidenced by longer reaction times and more task errors. The results suggest that the dlPFC participates in the cognitive control of gaze by suppressing stimulus-evoked automatic saccade programs.


Journal of Biological Chemistry | 2005

Defining a minimal motif required to prevent connexin oligomerization in the endoplasmic reticulum.

Jose Maza; Jayasri Das Sarma; Michael Koval

In contrast to most multimeric transmembrane complexes that oligomerize in the endoplasmic reticulum (ER), the gap junction protein connexin43 (Cx43) oligomerizes in an aspect of the Golgi apparatus. The mechanisms that prevent oligomerization of Cx43 and related connexins in the ER are not well understood. Also, some studies suggest that connexins can oligomerize in the ER. We used connexin constructs containing a C-terminal dilysine-based ER retention/retrieval signal (HKKSL) transfected into HeLa cells to study early events in connexin oligomerization. Using this approach, Cx43-HKKSL was retained in the ER and prevented from oligomerization. However, another ER-retained HKKSL-tagged connexin, Cx32-HKKSL, had the capacity to oligomerize. Because this suggested that Cx43 contains a motif that prevented oligomerization in the ER, a series of HKKSL-tagged and untagged Cx32/Cx43 chimeras was screened to define this motif. The minimal motif, which prevented ER oligomerization, consisted of the complete third transmembrane domain and the second extracellular loop from Cx43 on a Cx32 backbone. We propose that charged residues present in Cx43 and related connexins help prevent ER oligomerization by stabilizing the third transmembrane domain in the membrane bilayer.


The Journal of Neuroscience | 2006

Metabolism of 3-nitrotyrosine induces apoptotic death in dopaminergic cells.

Béatrice Blanchard-Fillion; Delphine Prou; Manuela Polydoro; David Spielberg; Elpida Tsika; Zeneng Wang; Stanley L. Hazen; Michael Koval; Serge Przedborski; Harry Ischiropoulos

Intrastriatal injection of 3-nitrotyrosine, which is a biomarker for nitrating oxidants, provokes dopaminergic neuronal death in rats by unknown mechanisms. Herein, we show that extracellular 3-nitrotyrosine is transported via the l-aromatic amino acid transporter in nondopaminergic NT2 cells, whereas in dopaminergic PC12 cells, it is transported by both the l-aromatic amino acid and the dopamine transporters. In both cell lines, 3-nitrotyrosine is a substrate for tyrosine tubulin ligase, resulting in its incorporation into the C terminus of α-tubulin. In NT2 cells, incorporation of 3-nitrotyrosine into α-tubulin induces a progressive, reversible reorganization of the microtubule architecture. In PC12 cells, 3-nitrotyrosine decreases intracellular dopamine levels and is metabolized by the concerted action of the aromatic amino acid decarboxylase and monoamine oxidase. Intracellular levels of 133 μmol of 3-nitrotyrosine per mole of tyrosine did not alter NT2 viability but induced PC12 apoptosis. The cell death was reversed by caspases and aromatic amino acid decarboxylase and monoamine oxidase inhibitors. 3-Nitrotyrosine induced loss of tyrosine hydroxylase-positive primary rat neurons, which was also prevented by an aromatic amino acid decarboxylase inhibitor. These findings provide a novel mechanism by which products generated by reactive nitrogen species induce dopaminergic neuron death and thus may contribute to the selective neurodegeneration in Parkinsons disease.


American Journal of Pathology | 2005

Autologous Apoptotic Cell Engulfment Stimulates Chemokine Secretion by Vascular Smooth Muscle Cells

Diana M. Fries; Richard Lightfoot; Michael Koval; Harry Ischiropoulos

Apoptosis of vascular smooth muscle cells (VSMCs) occurs in vivo under both physiological and pathological settings. The clearance of apoptotic cells may be accomplished in part by the surrounding normal VSMCs. However, the fate of internalized apoptotic cells, the rate of intracellular degradation, and the consequences of these processes to VSMC biology are unknown. Electron microscopy and confocal fluorescence imaging showed that rat VSMCs effectively bound and internalized autologous apoptotic VSMCs in vitro. Within 2 hours, the internalized apoptotic cells were delivered to lysosomes, and the majority of these internalized cells and their proteins were efficiently degraded by 24 hours. After degradation was completed, the phagocytic VSMCs remained viable with normal rates of proliferation. Clearance of apoptotic cells by VSMCs did not induce the release of vascular wall matrix proteases but was associated with a 1.6-fold increase in transforming growth factor-beta1 release. Interestingly, clearance of apoptotic cells stimulated VSMCs to secrete monocyte-chemoattractant protein-1 and cytokine-induced neutrophil chemoattractant. The coordinated release of transforming growth factor-beta1 and chemokines suggests that autologous apoptotic cell clearance stimulates VSMCs to release molecules that specifically recruit professional phagocytes while simultaneously dampening the inflammatory response and preventing vascular injury.


Cell Communication and Adhesion | 2003

Differential oligomerization of endoplasmic reticulum-retained connexin43/connexin32 chimeras

Jose Maza; Madalina Mateescu; Jayasri Das Sarma; Michael Koval

To examine early events in connexin oligomerization, we made connexin constructs containing a C-terminal di-lysine based endoplasmic reticulum (ER) retention/retrieval signal (HKKSL). Previously, we found that both Cx32-HKKSL and Cx43-HKKSL were retained in the ER. However, Cx32-HKKSL oligomerized into hexameric hemichannels, but Cx43-HKKSL was retained as an apparent monomer. To define elements that prevent Cx43-HKKSL oligomerization in the ER, we made a series of HKKSL-tagged Cx43/Cx32 chimeras. When expressed by HeLa cells, some chimeras were retained in the ER as apparent monomers, whereas others oligomerized in the ER. To date, the second and third transmembrane domains and the cytoplasmic loop domain provide the minimal sufficient Cx43 element to inhibit ER oligomerization.


Cell Communication and Adhesion | 2001

Cx43/β-Gal Inhibits Cx43 Transport in the Golgi Apparatus

Jayasri Das Sarma; Cecilia W. Lo; Michael Koval

A connexin construct consisting of bacterial β-galactosidase fused to the C-terminus of connexin43 (Cx43/β-gal) was used to examine Cx43 assembly in NIH 3T3 cells. Cx43/β-gal is retained in a perinuclear compartment and inhibits Cx43 transport to the cell surface. The intracellular connexin pool trapped by Cx43/β-gal was retained in a compartment that co-localized with a medial Golgi apparatus marker by immunofluorescence microscopy and that was readily disassembled by treatment with brefeldin A. Further analysis by sucrose gradient fractionation showed that Cx43 and Cx43/β-gal were assembled into a sub-hexameric complex, and that Cx43/β-gal expression also inhibited Cx43 assembly into hemichannels. While this is consistent with Cx43 hemichannel assembly in the trans Golgi network (TGN), these data also suggest that the dominant negative effect of Cx43/β-gal on Cx43 trafficking may reflect a putative sub-hexameric assembly intermediate formed in the Golgi apparatus.


Journal of Biological Chemistry | 2002

Identification of LBM180, a Lamellar Body Limiting Membrane Protein of Alveolar Type II Cells, as the ABC Transporter Protein ABCA3

Surafel Mulugeta; Joseph M. Gray; Kathleen L. Notarfrancesco; Linda W. Gonzales; Michael Koval; Sheldon I. Feinstein; Philip L. Ballard; Aron B. Fisher; Henry Shuman

Collaboration


Dive into the Michael Koval's collaboration.

Top Co-Authors

Avatar

Stephen G. Lomber

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fushan Wang

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Harry Ischiropoulos

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Jose Maza

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Kristine Debolt

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rashmin C. Savani

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge