Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Kues is active.

Publication


Featured researches published by Michael Kues.


Optics Express | 2014

Integrated frequency comb source of heralded single photons

Christian Reimer; Lucia Caspani; Mmatteo Clerici; Marcello Ferrera; Michael Kues; Marco Peccianti; Alessia Pasquazi; Luca Razzari; Brent E. Little; Sai T. Chu; David J. Moss; Roberto Morandotti

We report an integrated photon pair source based on a CMOS-compatible microring resonator that generates multiple, simultaneous, and independent photon pairs at different wavelengths in a frequency comb compatible with fiber communication wavelength division multiplexing channels (200 GHz channel separation) and with a linewidth that is compatible with quantum memories (110 MHz). It operates in a self-locked pump configuration, avoiding the need for active stabilization, making it extremely robust even at very low power levels.We report an integrated photon pair source based on a CMOS-compatible microring resonator that generates multiple, simultaneous, and independent photon pairs at different wavelengths in a frequency comb compatible with fiber communication wavelength division multiplexing channels (200 GHz channel separation) and with a linewidth that is compatible with quantum memories (110 MHz). It operates in a self-locked pump configuration, avoiding the need for active stabilization, making it extremely robust even at very low power levels.


Science | 2016

Generation of multiphoton entangled quantum states by means of integrated frequency combs

Christian Reimer; Michael Kues; Piotr Roztocki; Benjamin Wetzel; Brent E. Little; Sai T. Chu; T. W. Johnston; Yaron Bromberg; Lucia Caspani; David J. Moss; Roberto Morandotti

Entangled frequency combs The ability to generate optical frequency combs in which the output light is made up of millions of sharp lines precisely spaced apart has been important for optical applications and for fundamental science. Reimer et al. now show that frequency combs can be taken into the quantum regime. They took individual teeth of the combs and quantum-mechanically entangled them to form complex optical states. Because the method is compatible with existing fiber and semiconductor technology, the results demonstrate a possible scalable and practical platform for quantum technologies. Science, this issue p. 1176 Optical frequency combs are taken into the quantum regime. [Also see Perspective by Peacock and Steel] Complex optical photon states with entanglement shared among several modes are critical to improving our fundamental understanding of quantum mechanics and have applications for quantum information processing, imaging, and microscopy. We demonstrate that optical integrated Kerr frequency combs can be used to generate several bi- and multiphoton entangled qubits, with direct applications for quantum communication and computation. Our method is compatible with contemporary fiber and quantum memory infrastructures and with chip-scale semiconductor technology, enabling compact, low-cost, and scalable implementations. The exploitation of integrated Kerr frequency combs, with their ability to generate multiple, customizable, and complex quantum states, can provide a scalable, practical, and compact platform for quantum technologies.


Nature | 2017

On-chip generation of high-dimensional entangled quantum states and their coherent control

Michael Kues; Christian Reimer; Piotr Roztocki; Luis Romero Cortés; Stefania Sciara; Benjamin Wetzel; Yanbing Zhang; Alfonso Carmelo Cino; Sai T. Chu; Brent E. Little; David J. Moss; Lucia Caspani; José Azaña; Roberto Morandotti

Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics, for increasing the sensitivity of quantum imaging schemes, for improving the robustness and key rate of quantum communication protocols, for enabling a richer variety of quantum simulations, and for achieving more efficient and error-tolerant quantum computation. Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of non-classical optical states. However, so far, integrated entangled quantum sources have been limited to qubits (D = 2). Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple high-purity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with D = 10. Furthermore, using state-of-the-art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode.


Nature Communications | 2015

Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip

Christian Reimer; Michael Kues; Lucia Caspani; Benjamin Wetzel; Piotr Roztocki; Matteo Clerici; Yoann Jestin; Marcello Ferrera; Marco Peccianti; Alessia Pasquazi; Brent E. Little; Sai T. Chu; David J. Moss; Roberto Morandotti

Nonlinear optical processes are one of the most important tools in modern optics with a broad spectrum of applications in, for example, frequency conversion, spectroscopy, signal processing and quantum optics. For practical and ultimately widespread implementation, on-chip devices compatible with electronic integrated circuit technology offer great advantages in terms of low cost, small footprint, high performance and low energy consumption. While many on-chip key components have been realized, to date polarization has not been fully exploited as a degree of freedom for integrated nonlinear devices. In particular, frequency conversion based on orthogonally polarized beams has not yet been demonstrated on chip. Here we show frequency mixing between orthogonal polarization modes in a compact integrated microring resonator and demonstrate a bi-chromatically pumped optical parametric oscillator. Operating the device above and below threshold, we directly generate orthogonally polarized beams, as well as photon pairs, respectively, that can find applications, for example, in optical communication and quantum optics.


Optics Express | 2009

Nonlinear dynamics of femtosecond supercontinuum generation with feedback

Michael Kues; Nicoletta Brauckmann; Till Walbaum; Petra Groß; Carsten Fallnich

We numerically study the impact of feedback on supercontinuum generation within a microstructured fiber inside a ring resonator, synchronously pumped with femtosecond pulses. In certain parameter ranges we observe a steady-state oscillator-like operation mode of the system. Depending on pump power also period doubling up to chaos is shown by the system. Even with the inclusion of realistic pump noise as perturbation, the periodic behavior was still achievable in numerical modeling as well as in a first experimental verification.


Optics Express | 2010

Experimental investigations on nonlinear dynamics in supercontinuum generation with feedback

Nicoletta Brauckmann; Michael Kues; Till Walbaum; Petra Groß; Carsten Fallnich

A system for supercontinuum generation by using a photonic crystal fiber within a synchronously pumped ring cavity is presented. The feedback led to an interaction of the generated supercontinuum with the following femtosecond laser pulses and thus to the formation of a nonlinear oscillator. The nonlinear dynamical behavior of this system was investigated experimentally and compared with numerical simulations. Steady state, period doubling and higher order multiplication of the repetition rate as well as limit cycle and chaotic behavior were observed in the supercontinuum generating system.


Nanophotonics | 2016

Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated Quantum Frequency Combs

Lucia Caspani; Christian Reimer; Michael Kues; Piotr Roztocki; Matteo Clerici; Benjamin Wetzel; Yoann Jestin; Marcello Ferrera; Marco Peccianti; Alessia Pasquazi; Luca Razzari; Brent E. Little; Sai T. Chu; David J. Moss; Roberto Morandotti

Recent development in quantum photonics allowed to start the process of bringing photonic-quantum-based systems out of the lab into real world applications. As an example, devices for the exchange of a cryptographic key secured by the law of quantum mechanics are currently commercially available. In order to further boost this process, the next step is to migrate the results achieved by means of bulky and expensive setups to miniaturized and affordable devices. Integrated quantum photonics is exactly addressing this issue. In this paper we briefly review the most recent advancements in the generation of quantum states of light (at the core of quantum cryptography and computing) on chip. In particular, we focus on optical microcavities, as they can offer a solution to the issue of low efficiency (low number of photons generated) typical of the materials mostly used in integrated platforms. In addition, we show that specifically designed microcavities can also offer further advantages, such as compatibility with existing telecom standard (thus allowing to exploit the existing fiber network) and quantum memories (necessary in turns to extend the communication distance), as well as longitudinal multimode character. This last property (i.e. the increased dimensionality necessary for describing the quantum state of a photon) is achieved thanks to the generating multiple photon pairs on a frequency comb corresponding to the microcavity resonances. Further achievements include the possibility to fully exploit the polarization degree of freedom also for integrated devices. These results pave the way to the generation of integrated quantum frequency combs, that in turn may find application as quantum computing platform.Abstract Recent developments in quantum photonics have initiated the process of bringing photonic-quantumbased systems out-of-the-lab and into real-world applications. As an example, devices to enable the exchange of a cryptographic key secured by the laws of quantum mechanics are already commercially available. In order to further boost this process, the next step is to transfer the results achieved by means of bulky and expensive setups into miniaturized and affordable devices. Integrated quantum photonics is exactly addressing this issue. In this paper, we briefly review the most recent advancements in the generation of quantum states of light on-chip. In particular, we focus on optical microcavities, as they can offer a solution to the problem of low efficiency that is characteristic of the materials typically used in integrated platforms. In addition, we show that specifically designed microcavities can also offer further advantages, such as compatibility with telecom standards (for exploiting existing fibre networks) and quantum memories (necessary to extend the communication distance), as well as giving a longitudinal multimode character for larger information transfer and processing. This last property (i.e., the increased dimensionality of the photon quantum state) is achieved through the ability to generate multiple photon pairs on a frequency comb, corresponding to the microcavity resonances. Further achievements include the possibility of fully exploiting the polarization degree of freedom, even for integrated devices. These results pave the way for the generation of integrated quantum frequency combs that, in turn, may find important applications toward the realization of a compact quantum-computing platform.


Optics Express | 2013

Integrated CARS source based on seeded four-wave mixing in silicon nitride.

Jörn P. Epping; Michael Kues; Peter J. M. van der Slot; Christopher James Lee; Carsten Fallnich; Klaus J. Boller

We present a theoretical investigation of an integrated nonlinear light source for coherent anti-Stokes Raman scattering (CARS) based on silicon nitride waveguides. Wavelength tunable and temporally synchronized signal and idler pulses are obtained by using seeded four-wave mixing. We find that the calculated input pump power needed for nonlinear wavelength generation is more than one order of magnitude lower than in previously reported approaches based on optical fibers. The tuning range of the wavelength conversion was calculated to be 1418 nm to 1518 nm (idler) and 788 nm to 857 nm (signal), which corresponds to a coverage of vibrational transitions from 2350 cm-1 to 2810 cm-1. A maximum conversion efficiency of 19.1% at a peak pump power of 300 W is predicted.


Optics Express | 2010

Adjustment of supercontinua via the optical feedback phase – numerical investigations

Nicoletta Brauckmann; Michael Kues; Petra Groß; Carsten Fallnich

The delay and phase dependent behavior of a system for supercontinuum generation by using a microstructured fiber within a synchronously pumped ring resonator is presented numerically. The feedback introduced by the resonator led to an interaction of the supercontinuum with the following femtosecond laser pulses and thus to the formation of a nonlinear oscillator. Via the feedback phase different regimes of nonlinear dynamics, such as steady state, period multiplication, limit cycle and chaos can be adjusted systematically. The spectrum within one regime of nonlinear dynamics can additionally be modified independently from the regime of nonlinear dynamics.


Optics Express | 2013

Linearly polarized emission from random lasers with anisotropically amplifying media

Sebastian Knitter; Michael Kues; Michael Haidl; Carsten Fallnich

Simulations on three-dimensional random lasers were performed by finite-difference time-domain integration of Maxwells equations combined with rate-equations providing gain. We investigated the frequency-dependent emission polarization of random lasers in the far-field of the sample and characterized the influence of anisotropic pumping in orthogonal polarizations. Under weak scattering, the polarization states of random lasing modes were random for isotropic pumping and linear under anisotropic pumping. These findings are in accordance with recent experimental observations. A crossover was observed towards very strong scattering, in which the scattering destroys the pump-induced polarization-anisotropy of the random lasing modes and randomizes (scrambles) the mode-polarization.

Collaboration


Dive into the Michael Kues's collaboration.

Top Co-Authors

Avatar

Christian Reimer

Institut national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Piotr Roztocki

Institut national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Roberto Morandotti

Institut national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Benjamin Wetzel

Institut national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Sai T. Chu

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

David J. Moss

Swinburne University of Technology

View shared research outputs
Top Co-Authors

Avatar

Lucia Caspani

University of Strathclyde

View shared research outputs
Top Co-Authors

Avatar

Brent E. Little

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge