Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Kuhn is active.

Publication


Featured researches published by Michael Kuhn.


Nucleic Acids Research | 2012

STRING v9.1: protein-protein interaction networks, with increased coverage and integration

Andrea Franceschini; Damian Szklarczyk; Sune Frankild; Michael Kuhn; Milan Simonovic; Alexander Roth; Jianyi Lin; Pablo Minguez; Peer Bork; Christian von Mering; Lars Juhl Jensen

Complete knowledge of all direct and indirect interactions between proteins in a given cell would represent an important milestone towards a comprehensive description of cellular mechanisms and functions. Although this goal is still elusive, considerable progress has been made—particularly for certain model organisms and functional systems. Currently, protein interactions and associations are annotated at various levels of detail in online resources, ranging from raw data repositories to highly formalized pathway databases. For many applications, a global view of all the available interaction data is desirable, including lower-quality data and/or computational predictions. The STRING database (http://string-db.org/) aims to provide such a global perspective for as many organisms as feasible. Known and predicted associations are scored and integrated, resulting in comprehensive protein networks covering >1100 organisms. Here, we describe the update to version 9.1 of STRING, introducing several improvements: (i) we extend the automated mining of scientific texts for interaction information, to now also include full-text articles; (ii) we entirely re-designed the algorithm for transferring interactions from one model organism to the other; and (iii) we provide users with statistical information on any functional enrichment observed in their networks.


Nucleic Acids Research | 2011

The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored

Damian Szklarczyk; Andrea Franceschini; Michael Kuhn; Milan Simonovic; Alexander Roth; Pablo Minguez; Tobias Doerks; Manuel Stark; Jean Muller; Peer Bork; Lars Juhl Jensen; Christian von Mering

An essential prerequisite for any systems-level understanding of cellular functions is to correctly uncover and annotate all functional interactions among proteins in the cell. Toward this goal, remarkable progress has been made in recent years, both in terms of experimental measurements and computational prediction techniques. However, public efforts to collect and present protein interaction information have struggled to keep up with the pace of interaction discovery, partly because protein–protein interaction information can be error-prone and require considerable effort to annotate. Here, we present an update on the online database resource Search Tool for the Retrieval of Interacting Genes (STRING); it provides uniquely comprehensive coverage and ease of access to both experimental as well as predicted interaction information. Interactions in STRING are provided with a confidence score, and accessory information such as protein domains and 3D structures is made available, all within a stable and consistent identifier space. New features in STRING include an interactive network viewer that can cluster networks on demand, updated on-screen previews of structural information including homology models, extensive data updates and strongly improved connectivity and integration with third-party resources. Version 9.0 of STRING covers more than 1100 completely sequenced organisms; the resource can be reached at http://string-db.org.


Nucleic Acids Research | 2009

STRING 8—a global view on proteins and their functional interactions in 630 organisms

Lars Juhl Jensen; Michael Kuhn; Manuel Stark; Samuel Chaffron; Christopher J. Creevey; Jean Muller; Tobias Doerks; Philippe Julien; Alexander Roth; Milan Simonovic; Peer Bork; Christian von Mering

Functional partnerships between proteins are at the core of complex cellular phenotypes, and the networks formed by interacting proteins provide researchers with crucial scaffolds for modeling, data reduction and annotation. STRING is a database and web resource dedicated to protein–protein interactions, including both physical and functional interactions. It weights and integrates information from numerous sources, including experimental repositories, computational prediction methods and public text collections, thus acting as a meta-database that maps all interaction evidence onto a common set of genomes and proteins. The most important new developments in STRING 8 over previous releases include a URL-based programming interface, which can be used to query STRING from other resources, improved interaction prediction via genomic neighborhood in prokaryotes, and the inclusion of protein structures. Version 8.0 of STRING covers about 2.5 million proteins from 630 organisms, providing the most comprehensive view on protein–protein interactions currently available. STRING can be reached at http://string-db.org/.


Science | 2008

Drug target identification using side-effect similarity

Monica Campillos; Michael Kuhn; Anne-Claude Gavin; Lars Juhl Jensen; Peer Bork

Targets for drugs have so far been predicted on the basis of molecular or cellular features, for example, by exploiting similarity in chemical structure or in activity across cell lines. We used phenotypic side-effect similarities to infer whether two drugs share a target. Applied to 746 marketed drugs, a network of 1018 side effect–driven drug-drug relations became apparent, 261 of which are formed by chemically dissimilar drugs from different therapeutic indications. We experimentally tested 20 of these unexpected drug-drug relations and validated 13 implied drug-target relations by in vitro binding assays, of which 11 reveal inhibition constants equal to less than 10 micromolar. Nine of these were tested and confirmed in cell assays, documenting the feasibility of using phenotypic information to infer molecular interactions and hinting at new uses of marketed drugs.


Nucleic Acids Research | 2007

STITCH: interaction networks of chemicals and proteins

Michael Kuhn; Christian von Mering; Monica Campillos; Lars Juhl Jensen; Peer Bork

The knowledge about interactions between proteins and small molecules is essential for the understanding of molecular and cellular functions. However, information on such interactions is widely dispersed across numerous databases and the literature. To facilitate access to this data, STITCH (‘search tool for interactions of chemicals’) integrates information about interactions from metabolic pathways, crystal structures, binding experiments and drug–target relationships. Inferred information from phenotypic effects, text mining and chemical structure similarity is used to predict relations between chemicals. STITCH further allows exploring the network of chemical relations, also in the context of associated binding proteins. Each proposed interaction can be traced back to the original data sources. Our database contains interaction information for over 68 000 different chemicals, including 2200 drugs, and connects them to 1.5 million genes across 373 genomes and their interactions contained in the STRING database. STITCH is available at http://stitch.embl.de/


Nucleic Acids Research | 2007

SuperTarget and Matador: resources for exploring drug-target relationships

Stefan Günther; Michael Kuhn; Mathias Dunkel; Monica Campillos; Christian Senger; Evangelia Petsalaki; Jessica Ahmed; Eduardo Garcia Urdiales; Andreas Gewiess; Lars Juhl Jensen; Reinhard Schneider; Roman Skoblo; Robert B. Russell; Philip E. Bourne; Peer Bork; Robert Preissner

The molecular basis of drug action is often not well understood. This is partly because the very abundant and diverse information generated in the past decades on drugs is hidden in millions of medical articles or textbooks. Therefore, we developed a one-stop data warehouse, SuperTarget that integrates drug-related information about medical indication areas, adverse drug effects, drug metabolization, pathways and Gene Ontology terms of the target proteins. An easy-to-use query interface enables the user to pose complex queries, for example to find drugs that target a certain pathway, interacting drugs that are metabolized by the same cytochrome P450 or drugs that target the same protein but are metabolized by different enzymes. Furthermore, we provide tools for 2D drug screening and sequence comparison of the targets. The database contains more than 2500 target proteins, which are annotated with about 7300 relations to 1500 drugs; the vast majority of entries have pointers to the respective literature source. A subset of these drugs has been annotated with additional binding information and indirect interactions and is available as a separate resource called Matador. SuperTarget and Matador are available at http://insilico.charite.de/supertarget and http://matador.embl.de


Nucleic Acids Research | 2010

eggNOG v2.0: extending the evolutionary genealogy of genes with enhanced non-supervised orthologous groups, species and functional annotations

Jean Muller; Damian Szklarczyk; P. Julien; I. Letunic; Alexander Roth; Michael Kuhn; S. Powell; C. von Mering; Tobias Doerks; Lars Juhl Jensen; Peer Bork

The identification of orthologous relationships forms the basis for most comparative genomics studies. Here, we present the second version of the eggNOG database, which contains orthologous groups (OGs) constructed through identification of reciprocal best BLAST matches and triangular linkage clustering. We applied this procedure to 630 complete genomes (529 bacteria, 46 archaea and 55 eukaryotes), which is a 2-fold increase relative to the previous version. The pipeline yielded 224 847 OGs, including 9724 extended versions of the original COG and KOG. We computed OGs for different levels of the tree of life; in addition to the species groups included in our first release (i.e. fungi, metazoa, insects, vertebrates and mammals), we have now constructed OGs for archaea, fishes, rodents and primates. We automatically annotate the non-supervised orthologous groups (NOGs) with functional descriptions, protein domains, and functional categories as defined initially for the COG/KOG database. In-depth analysis is facilitated by precomputed high-quality multiple sequence alignments and maximum-likelihood trees for each of the available OGs. Altogether, eggNOG covers 2 242 035 proteins (built from 2 590 259 proteins) and provides a broad functional description for at least 1 966 709 (88%) of them. Users can access the complete set of orthologous groups via a web interface at: http://eggnog.embl.de.


Nucleic Acids Research | 2014

STITCH 4: integration of protein–chemical interactions with user data

Michael Kuhn; Damian Szklarczyk; Sune Pletscher-Frankild; Thomas H. Blicher; Christian von Mering; Lars Juhl Jensen; Peer Bork

STITCH is a database of protein–chemical interactions that integrates many sources of experimental and manually curated evidence with text-mining information and interaction predictions. Available at http://stitch.embl.de, the resulting interaction network includes 390 000 chemicals and 3.6 million proteins from 1133 organisms. Compared with the previous version, the number of high-confidence protein–chemical interactions in human has increased by 45%, to 367 000. In this version, we added features for users to upload their own data to STITCH in the form of internal identifiers, chemical structures or quantitative data. For example, a user can now upload a spreadsheet with screening hits to easily check which interactions are already known. To increase the coverage of STITCH, we expanded the text mining to include full-text articles and added a prediction method based on chemical structures. We further changed our scheme for transferring interactions between species to rely on orthology rather than protein similarity. This improves the performance within protein families, where scores are now transferred only to orthologous proteins, but not to paralogous proteins. STITCH can be accessed with a web-interface, an API and downloadable files.


Nucleic Acids Research | 2012

STITCH 3: zooming in on protein–chemical interactions

Michael Kuhn; Damian Szklarczyk; Andrea Franceschini; Christian von Mering; Lars Juhl Jensen; Peer Bork

To facilitate the study of interactions between proteins and chemicals, we have created STITCH, an aggregated database of interactions connecting over 300u2009000 chemicals and 2.6 million proteins from 1133 organisms. Compared to the previous version, the number of chemicals with interactions and the number of high-confidence interactions both increase 4-fold. The database can be accessed interactively through a web interface, displaying interactions in an integrated network view. It is also available for computational studies through downloadable files and an API. As an extension in the current version, we offer the option to switch between two levels of detail, namely whether stereoisomers of a given compound are shown as a merged entity or as separate entities. Separate display of stereoisomers is necessary, for example, for carbohydrates and chiral drugs. Combining the isomers increases the coverage, as interaction databases and publications found through text mining will often refer to compounds without specifying the stereoisomer. The database is accessible at http://stitch.embl.de/.


Nucleic Acids Research | 2010

STITCH 2: an interaction network database for small molecules and proteins

Michael Kuhn; Damian Szklarczyk; Andrea Franceschini; Monica Campillos; Christian von Mering; Lars Juhl Jensen; Andreas Beyer; Peer Bork

Over the last years, the publicly available knowledge on interactions between small molecules and proteins has been steadily increasing. To create a network of interactions, STITCH aims to integrate the data dispersed over the literature and various databases of biological pathways, drug–target relationships and binding affinities. In STITCH 2, the number of relevant interactions is increased by incorporation of BindingDB, PharmGKB and the Comparative Toxicogenomics Database. The resulting network can be explored interactively or used as the basis for large-scale analyses. To facilitate links to other chemical databases, we adopt InChIKeys that allow identification of chemicals with a short, checksum-like string. STITCH 2.0 connects proteins from 630 organisms to over 74 000 different chemicals, including 2200 drugs. STITCH can be accessed at http://stitch.embl.de/.

Collaboration


Dive into the Michael Kuhn's collaboration.

Top Co-Authors

Avatar

Peer Bork

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Monica Campillos

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Damian Szklarczyk

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Anne-Claude Gavin

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Alexander Roth

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Andrea Franceschini

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Milan Simonovic

Swiss Institute of Bioinformatics

View shared research outputs
Researchain Logo
Decentralizing Knowledge