Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Kulik is active.

Publication


Featured researches published by Michael Kulik.


Stem Cells | 2007

Activin a efficiently specifies definitive endoderm from human embryonic stem cells only when phosphatidylinositol 3-kinase signaling is suppressed.

Amanda B. McLean; Kevin A. D'Amour; Karen L. Jones; Malini Krishnamoorthy; Michael Kulik; David M. Reynolds; Alan M. Sheppard; Huiqing Liu; Ying Xu; Emmanuel E. Baetge; Stephen Dalton

Human ESCs (hESCs) respond to signals that determine their pluripotency, proliferation, survival, and differentiation status. In this report, we demonstrate that phosphatidylinositol 3‐kinase (PI3K) antagonizes the ability of hESCs to differentiate in response to transforming growth factor β family members such as Activin A and Nodal. Inhibition of PI3K signaling efficiently promotes differentiation of hESCs into mesendoderm and then definitive endoderm (DE) by allowing them to be specified by Activin/Nodal signals present in hESC cultures. Under conditions where hESCs are grown in mouse embryo fibroblast‐conditioned medium under feeder‐free conditions, ∼70%–80% are converted into DE following 5 days of treatment with inhibitors of the PI3K pathway, such as LY 294002 and AKT1‐II. Microarray and quantitative polymerase chain reaction‐based gene expression profiling demonstrates that definitive endoderm formation under these conditions closely parallels that following specification with elevated Activin A and low fetal calf serum (FCS)/knockout serum replacement (KSR). Reduced insulin/insulin‐like growth factor (IGF) signaling was found to be critical for cell fate commitment into DE. Levels of insulin/IGF present in FCS/KSR, normally used to promote self‐renewal of hESCs, antagonized differentiation. In summary, we show that generation of hESC‐DE requires two conditions: signaling by Activin/Nodal family members and release from inhibitory signals generated by PI3K through insulin/IGF. These findings have important implications for our understanding of hESC self‐renewal and early cell fate decisions.


Cell Stem Cell | 2012

Signaling Network Crosstalk in Human Pluripotent Cells: A Smad2/3-Regulated Switch that Controls the Balance between Self-Renewal and Differentiation

Amar M. Singh; David Reynolds; Timothy S. Cliff; Satoshi Ohtsuka; Alexa L. Mattheyses; Yuhua Sun; Laura Menendez; Michael Kulik; Stephen Dalton

A general mechanism for how intracellular signaling pathways in human pluripotent cells are coordinated and how they maintain self-renewal remain to be elucidated. In this report, we describe a signaling mechanism where PI3K/Akt activity maintains self-renewal by restraining prodifferentiation signaling through suppression of the Raf/Mek/Erk and canonical Wnt signaling pathways. When active, PI3K/Akt establishes conditions where Activin A/Smad2,3 performs a pro-self-renewal function by activating target genes, including Nanog. When PI3K/Akt signaling is low, Wnt effectors are activated and function in conjunction with Smad2,3 to promote differentiation. The switch in Smad2,3 activity after inactivation of PI3K/Akt requires the activation of canonical Wnt signaling by Erk, which targets Gsk3β. In sum, we define a signaling framework that converges on Smad2,3 and determines its ability to regulate the balance between alternative cell states. This signaling paradigm has far-reaching implications for cell fate decisions during early embryonic development.


Nature Protocols | 2013

Directed differentiation of human pluripotent cells to neural crest stem cells

Laura Menendez; Michael Kulik; Austin T Page; Sarah S. Park; James D. Lauderdale; Michael L. Cunningham; Stephen Dalton

Multipotent neural crest stem cells (NCSCs) have the potential to generate a wide range of cell types including melanocytes; peripheral neurons; and smooth muscle, bone, cartilage and fat cells. This protocol describes in detail how to perform a highly efficient, lineage-specific differentiation of human pluripotent cells to a NCSC fate. The approach uses chemically defined media under feeder-free conditions, and it uses two small-molecule compounds to achieve efficient conversion of human pluripotent cells to NCSCs in ∼15 d. After completion of this protocol, NCSCs can be used for numerous applications, including the generation of sufficient cell numbers to perform drug screens, for the development of cell therapeutics on an industrial scale and to provide a robust model for human disease. This protocol can be also be applied to patient-derived induced pluripotent stem cells and thus used to further the knowledge of human disease associated with neural crest development, for example, Treacher-Collins Syndrome.


PLOS Computational Biology | 2011

Replication Timing: A Fingerprint for Cell Identity and Pluripotency

Tyrone Ryba; Ichiro Hiratani; Takayo Sasaki; Dana Battaglia; Michael Kulik; Jinfeng Zhang; Stephen Dalton; David M. Gilbert

Many types of epigenetic profiling have been used to classify stem cells, stages of cellular differentiation, and cancer subtypes. Existing methods focus on local chromatin features such as DNA methylation and histone modifications that require extensive analysis for genome-wide coverage. Replication timing has emerged as a highly stable cell type-specific epigenetic feature that is regulated at the megabase-level and is easily and comprehensively analyzed genome-wide. Here, we describe a cell classification method using 67 individual replication profiles from 34 mouse and human cell lines and stem cell-derived tissues, including new data for mesendoderm, definitive endoderm, mesoderm and smooth muscle. Using a Monte-Carlo approach for selecting features of replication profiles conserved in each cell type, we identify “replication timing fingerprints” unique to each cell type and apply a k nearest neighbor approach to predict known and unknown cell types. Our method correctly classifies 67/67 independent replication-timing profiles, including those derived from closely related intermediate stages. We also apply this method to derive fingerprints for pluripotency in human and mouse cells. Interestingly, the mouse pluripotency fingerprint overlaps almost completely with previously identified genomic segments that switch from early to late replication as pluripotency is lost. Thereafter, replication timing and transcription within these regions become difficult to reprogram back to pluripotency, suggesting these regions highlight an epigenetic barrier to reprogramming. In addition, the major histone cluster Hist1 consistently becomes later replicating in committed cell types, and several histone H1 genes in this cluster are downregulated during differentiation, suggesting a possible instrument for the chromatin compaction observed during differentiation. Finally, we demonstrate that unknown samples can be classified independently using site-specific PCR against fingerprint regions. In sum, replication fingerprints provide a comprehensive means for cell characterization and are a promising tool for identifying regions with cell type-specific organization.


Journal of Biological Chemistry | 2012

Regulation of glycan structures in murine embryonic stem cells: combined transcript profiling of glycan-related genes and glycan structural analysis

Alison V. Nairn; Kazuhiro Aoki; Mitche dela Rosa; Mindy Porterfield; Jae-Min Lim; Michael Kulik; J. Michael Pierce; Lance Wells; Stephen Dalton; Michael Tiemeyer; Kelley W. Moremen

Background: Glycans contribute to vertebrate development, but regulatory mechanisms are unknown. Results: Glycans and transcripts encoding the glycosylation machinery were profiled during stem cell differentiation. Conclusion: Changes in glycans frequently correlated with changes in transcripts, supporting a significant role for transcriptional regulation. Significance: Knowledge of the mechanisms that regulate glycan expression provides insight into the roles of glycosylation in development. The abundance and structural diversity of glycans on glycoproteins and glycolipids are highly regulated and play important roles during vertebrate development. Because of the challenges associated with studying glycan regulation in vertebrate embryos, we have chosen to study mouse embryonic stem (ES) cells as they differentiate into embryoid bodies (EBs) or into extraembryonic endodermal (ExE) cells as a model for cellular differentiation. We profiled N- and O-glycan structures isolated from these cell populations and examined transcripts encoding the corresponding enzymatic machinery for glycan biosynthesis in an effort to probe the mechanisms that drive the regulation of glycan diversity. During differentiation from mouse ES cells to either EBs or ExE cells, general trends were detected. The predominance of high mannose N-glycans in ES cells shifted to an equal abundance of complex and high mannose structures, increased sialylation, and increased α-Gal termination in the differentiated cell populations. Whereas core 1 O-glycan structures predominated in all three cell populations, increased sialylation and increased core diversity characterized the O-glycans of both differentiated cell types. Increased polysialylation was also found in both differentiated cell types. Differences between the two differentiated cell types included greater sialylation of N-glycans in EBs, whereas α-Gal-capped structures were more prevalent in ExE cells. Changes in glycan structures generally, but not uniformly, correlated with alterations in transcript abundance for the corresponding biosynthetic enzymes, suggesting that transcriptional regulation contributes significantly to the regulation of glycan expression. Knowledge of glycan structural diversity and transcript regulation should provide greater understanding of the roles of protein glycosylation in vertebrate development.


Genome Research | 2015

Dynamic changes in replication timing and gene expression during lineage specification of human pluripotent stem cells

Juan Carlos Rivera-Mulia; Quinton Buckley; Takayo Sasaki; Jared Zimmerman; Ruth Didier; Kristopher L. Nazor; Jeanne F. Loring; Zheng Lian; Sherman M. Weissman; Allan J. Robins; Thomas C. Schulz; Laura Menendez; Michael Kulik; Stephen Dalton; Haitham Gabr; Tamer Kahveci; David M. Gilbert

Duplication of the genome in mammalian cells occurs in a defined temporal order referred to as its replication-timing (RT) program. RT changes dynamically during development, regulated in units of 400-800 kb referred to as replication domains (RDs). Changes in RT are generally coordinated with transcriptional competence and changes in subnuclear position. We generated genome-wide RT profiles for 26 distinct human cell types, including embryonic stem cell (hESC)-derived, primary cells and established cell lines representing intermediate stages of endoderm, mesoderm, ectoderm, and neural crest (NC) development. We identified clusters of RDs that replicate at unique times in each stage (RT signatures) and confirmed global consolidation of the genome into larger synchronously replicating segments during differentiation. Surprisingly, transcriptome data revealed that the well-accepted correlation between early replication and transcriptional activity was restricted to RT-constitutive genes, whereas two-thirds of the genes that switched RT during differentiation were strongly expressed when late replicating in one or more cell types. Closer inspection revealed that transcription of this class of genes was frequently restricted to the lineage in which the RT switch occurred, but was induced prior to a late-to-early RT switch and/or down-regulated after an early-to-late RT switch. Analysis of transcriptional regulatory networks showed that this class of genes contains strong regulators of genes that were only expressed when early replicating. These results provide intriguing new insight into the complex relationship between transcription and RT regulation during human development.


Journal of Lipid Research | 2010

Transcript profiling and lipidomic analysis of ceramide subspecies in mouse embryonic stem cells and embryoid bodies

Hyejung Park; Christopher A. Haynes; Alison V. Nairn; Michael Kulik; Stephen Dalton; Kelley W. Moremen; Alfred H. Merrill

Ceramides (Cers) are important in embryogenesis, but no comprehensive analysis of gene expression for Cer metabolism nor the Cer amounts and subspecies has been conducted with an often used model: mouse embryonic stem cells (mESCs) versus embroid bodies (EBs). Measuring the mRNA levels by quantitative RT-PCR and the amounts of the respective metabolites by LC-ESI/MS/MS, notable differences between R1 mESCs and EBs were: EBs have higher mRNAs for CerS1 and CerS3, which synthesize C18- and C≥24-carbons dihydroceramides (DH)Cer, respectively; EBs have higher CerS2 (for C24:0- and C24:1-); and EBs have lower CerS5 + CerS6 (for C16-). In agreement with these findings, EBs have (DH)Cer with higher proportions of C18-, C24- and C26- and less C16-fatty acids, and longer (DH)Cer are also seen in monohexosylCers and sphingomyelins. EBs had higher mRNAs for fatty acyl-CoA elongases that produce C18-, C24-, and C26-fatty acyl-CoAs (Elovl3 and Elovl6), and higher amounts of these cosubstrates for CerS. Thus, these studies have found generally good agreement between genomic and metabolomic data in defining that conversion of mESCs to EBs is accompanied by a large number of changes in gene expression and subspecies distributions for both sphingolipids and fatty acyl-CoAs.


Biochimica et Biophysica Acta | 2014

Changes in glycosaminoglycan structure on differentiation of human embryonic stem cells towards mesoderm and endoderm lineages

Leyla Gasimli; Anne Marie Hickey; Bo Yang; Guoyun Li; Mitche dela Rosa; Alison V. Nairn; Michael Kulik; Jonathan S. Dordick; Kelley W. Moremen; Stephen Dalton; Robert J. Linhardt

BACKGROUND Proteoglycans are found on the cell surface and in the extracellular matrix, and serve as prime sites for interaction with signaling molecules. Proteoglycans help regulate pathways that control stem cell fate, and therefore represent an excellent tool to manipulate these pathways. Despite their importance, there is a dearth of data linking glycosaminoglycan structure within proteoglycans with stem cell differentiation. METHODS Human embryonic stem cell line WA09 (H9) was differentiated into early mesoderm and endoderm lineages, and the glycosaminoglycanomic changes accompanying these transitions were studied using transcript analysis, immunoblotting, immunofluorescence and disaccharide analysis. RESULTS Pluripotent H9 cell lumican had no glycosaminoglycan chains whereas in splanchnic mesoderm lumican was glycosaminoglycanated. H9 cells have primarily non-sulfated heparan sulfate chains. On differentiation towards splanchnic mesoderm and hepatic lineages N-sulfo group content increases. Differences in transcript expression of NDST1, HS6ST2 and HS6ST3, three heparan sulfate biosynthetic enzymes, within splanchnic mesoderm cells compared to H9 cells correlate to changes in glycosaminoglycan structure. CONCLUSIONS Differentiation of embryonic stem cells markedly changes the proteoglycanome. GENERAL SIGNIFICANCE The glycosaminoglycan biosynthetic pathway is complex and highly regulated, and therefore, understanding the details of this pathway should enable better control with the aim of directing stem cell differentiation.


Stem Cells | 2016

ST8SIA4‐Dependent Polysialylation is Part of a Developmental Program Required for Germ Layer Formation from Human Pluripotent Stem Cells

Ryan P. Berger; Yu Hua Sun; Michael Kulik; Jin Kyu Lee; Alison V. Nairn; Kelley W. Moremen; Michael Pierce; Stephen Dalton

Polysialic acid (PSA) is a carbohydrate polymer of repeating α‐2,8 sialic acid residues that decorates multiple targets, including neural cell adhesion molecule (NCAM). PST and STX encode the two enzymes responsible for PSA modification of target proteins in mammalian cells, but despite widespread polysialylation in embryonic development, the majority of studies have focused strictly on the role of PSA in neurogenesis. Using human pluripotent stem cells (hPSCs), we have revisited the developmental role of PST and STX and show that early progenitors of the three embryonic germ layers are polysialylated on their cell surface. Changes in polysialylation can be attributed to lineage‐specific expression of polysialyltransferase genes; PST is elevated in endoderm and mesoderm, while STX is elevated in ectoderm. In hPSCs, PST and STX genes are epigenetically marked by overlapping domains of H3K27 and H3K4 trimethylation, indicating that they are held in a “developmentally‐primed” state. Activation of PST transcription during early mesendoderm differentiation is under control of the T‐Goosecoid transcription factor network, a key regulatory axis required for early cell fate decisions in the vertebrate embryo. This establishes polysialyltransferase genes as part of a developmental program associated with germ layer establishment. Finally, we show by shRNA knockdown and CRISPR‐Cas9 genome editing that PST‐dependent cell surface polysialylation is essential for endoderm specification. This is the first report to demonstrate a role for a glycosyltransferase in hPSC lineage specification. Stem Cells 2016;34:1742–1752


Biomicrofluidics | 2012

Lectin-functionalized microchannels for characterizing pluripotent cells and early differentiation

Dwayne A. L. Vickers; Michael Kulik; Marina Hincapie; William S. Hancock; Stephen Dalton; Shashi K. Murthy

Embryonic stem (ES) cells are capable of proliferating and differentiating to form cells of the three embryonic germ layers, namely, endoderm, mesoderm, and ectoderm. The utilization of human ES cell derivatives requires the ability to direct differentiation to specific lineages in defined, efficient, and scalable systems. Better markers are needed to identify early differentiation. Lectins have been reported as an attractive alternative to the common stem cell markers. They have been used to identify, characterize, and isolate various cell subpopulations on the basis of the presentation of specific carbohydrate groups on the cell surface. This article demonstrates how simple adhesion assays in lectin-coated microfluidic channels can provide key information on the interaction of lectins with ES and definitive endoderm cells and thereby track early differentiation. The microfluidic approach incorporates both binding strength and cell surface receptor density, whereas traditional flow cytometry only incorporates the latter. Both approaches are examined and shown to be complementary with the microfluidic approach providing more biologically relevant information.

Collaboration


Dive into the Michael Kulik's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tyrone Ryba

Florida State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge