Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael L. Berumen is active.

Publication


Featured researches published by Michael L. Berumen.


Current Biology | 2012

Larval export from marine reserves and the recruitment benefit for fish and fisheries

Hugo B. Harrison; David H. Williamson; Richard D. Evans; Glenn R. Almany; Simon R. Thorrold; Garry R. Russ; Kevin A. Feldheim; Lynne van Herwerden; Serge Planes; Maya Srinivasan; Michael L. Berumen; Geoffrey P. Jones

Marine reserves, areas closed to all forms of fishing, continue to be advocated and implemented to supplement fisheries and conserve populations. However, although the reproductive potential of important fishery species can dramatically increase inside reserves, the extent to which larval offspring are exported and the relative contribution of reserves to recruitment in fished and protected populations are unknown. Using genetic parentage analyses, we resolve patterns of larval dispersal for two species of exploited coral reef fish within a network of marine reserves on the Great Barrier Reef. In a 1,000 km(2) study area, populations resident in three reserves exported 83% (coral trout, Plectropomus maculatus) and 55% (stripey snapper, Lutjanus carponotatus) of assigned offspring to fished reefs, with the remainder having recruited to natal reserves or other reserves in the region. We estimate that reserves, which account for just 28% of the local reef area, produced approximately half of all juvenile recruitment to both reserve and fished reefs within 30 km. Our results provide compelling evidence that adequately protected reserve networks can make a significant contribution to the replenishment of populations on both reserve and fished reefs at a scale that benefits local stakeholders.


Coral Reefs | 2009

Climate change and coral reef connectivity

Philip L. Munday; Jeffrey M. Leis; Janice M. Lough; Claire B. Paris; Michael J. Kingsford; Michael L. Berumen; Jonathan Lambrechts

This review assesses and predicts the impacts that rapid climate change will have on population connectivity in coral reef ecosystems, using fishes as a model group. Increased ocean temperatures are expected to accelerate larval development, potentially leading to reduced pelagic durations and earlier reef-seeking behaviour. Depending on the spatial arrangement of reefs, the expectation would be a reduction in dispersal distances and the spatial scale of connectivity. Small increase in temperature might enhance the number of larvae surviving the pelagic phase, but larger increases are likely to reduce reproductive output and increase larval mortality. Changes to ocean currents could alter the dynamics of larval supply and changes to planktonic productivity could affect how many larvae survive the pelagic stage and their condition at settlement; however, these patterns are likely to vary greatly from place-to-place and projections of how oceanographic features will change in the future lack sufficient certainty and resolution to make robust predictions. Connectivity could also be compromised by the increased fragmentation of reef habitat due to the effects of coral bleaching and ocean acidification. Changes to the spatial and temporal scales of connectivity have implications for the management of coral reef ecosystems, especially the design and placement of marine-protected areas. The size and spacing of protected areas may need to be strategically adjusted if reserve networks are to retain their efficacy in the future.


Coral Reefs | 2004

Sublethal effects of coral bleaching on an obligate coral feeding butterflyfish

Morgan S. Pratchett; Shaun K. Wilson; Michael L. Berumen; Mark I. McCormick

Coral bleaching is a significant and increasingly prevalent source of coral mortality, representing one of the most severe and widespread disturbances affecting coral reef ecosystems (Hoegh-Guldberg 1999; Pockley 2000). In the last few years (mostly since 1998), major episodes of coral bleaching have occurred on many coral reefs throughout the world, killing 20–80% of zooxanthellate corals (including both scleractinians and alcyonaceans) across expansive reef areas (e.g., Great Barrier Reef, Baird and Marshall 1998; Japan, Shibuno et al. 1999; eastern Pacific, Glynn et al. 2001; Caribbean, Ostrander et al. 2000). In addition to killing zooxanthellate corals, severe large-scale bleaching events may cause significant declines in the abundance of coral reef fishes, particularly among reef fish species that depend on live coral for food or shelter (Shibuno et al. 1999; Kokita and Nakazono 2001; Adjeroud et al. 2002).


Molecular Ecology Resources | 2010

Permanent Genetic Resources added to Molecular Ecology Resources Database 1 October 2009–30 November 2009

Aluana Gonçalves Abreu; Aitor Albaina; Tilman J. Alpermann; Vanessa E. Apkenas; S. Bankhead-Dronnet; Sara Bergek; Michael L. Berumen; Chang-Hung Cho; Jean Clobert; Aurélie Coulon; D. De Feraudy; Andone Estonba; Thomas Hankeln; Axel Hochkirch; Tsai-Wen Hsu; Tsurng-Juhn Huang; Xabier Irigoien; M. Iriondo; Kathleen M. Kay; Tim Kinitz; Linda Kothera; Maxime Le Hénanff; F. Lieutier; Olivier Lourdais; Camila M. T. Macrini; C. Manzano; C. Martin; Veronica R. F. Morris; Gerrit B. Nanninga; M. A. Pardo

This article documents the addition of 411 microsatellite marker loci and 15 pairs of Single Nucleotide Polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Acanthopagrus schlegeli, Anopheles lesteri, Aspergillus clavatus, Aspergillus flavus, Aspergillus fumigatus, Aspergillus oryzae, Aspergillus terreus, Branchiostoma japonicum, Branchiostoma belcheri, Colias behrii, Coryphopterus personatus, Cynogolssus semilaevis, Cynoglossus semilaevis, Dendrobium officinale, Dendrobium officinale, Dysoxylum malabaricum, Metrioptera roeselii, Myrmeciza exsul, Ochotona thibetana, Neosartorya fischeri, Nothofagus pumilio, Onychodactylus fischeri, Phoenicopterus roseus, Salvia officinalis L., Scylla paramamosain, Silene latifo, Sula sula, and Vulpes vulpes. These loci were cross‐tested on the following species: Aspergillus giganteus, Colias pelidne, Colias interior, Colias meadii, Colias eurytheme, Coryphopterus lipernes, Coryphopterus glaucofrenum, Coryphopterus eidolon, Gnatholepis thompsoni, Elacatinus evelynae, Dendrobium loddigesii Dendrobium devonianum, Dysoxylum binectariferum, Nothofagus antarctica, Nothofagus dombeyii, Nothofagus nervosa, Nothofagus obliqua, Sula nebouxii, and Sula variegata. This article also documents the addition of 39 sequencing primer pairs and 15 allele specific primers or probes for Paralithodes camtschaticus.


Ecology and Evolution | 2012

Persistence of self‐recruitment and patterns of larval connectivity in a marine protected area network

Michael L. Berumen; Glenn R. Almany; Serge Planes; Geoffrey P. Jones; Pablo Saenz-Agudelo; Simon R. Thorrold

The use of marine protected area (MPA) networks to sustain fisheries and conserve biodiversity is predicated on two critical yet rarely tested assumptions. Individual MPAs must produce sufficient larvae that settle within that reserves boundaries to maintain local populations while simultaneously supplying larvae to other MPA nodes in the network that might otherwise suffer local extinction. Here, we use genetic parentage analysis to demonstrate that patterns of self-recruitment of two reef fishes (Amphiprion percula and Chaetodon vagabundus) in an MPA in Kimbe Bay, Papua New Guinea, were remarkably consistent over several years. However, dispersal from this reserve to two other nodes in an MPA network varied between species and through time. The stability of our estimates of self-recruitment suggests that even small MPAs may be self-sustaining. However, our results caution against applying optimization strategies to MPA network design without accounting for variable connectivity among species and over time.


Molecular Ecology | 2013

Relative accuracy of three common methods of parentage analysis in natural populations

Hugo B. Harrison; Pablo Saenz-Agudelo; Serge Planes; Geoffrey P. Jones; Michael L. Berumen

Parentage studies and family reconstructions have become increasingly popular for investigating a range of evolutionary, ecological and behavioural processes in natural populations. However, a number of different assignment methods have emerged in common use and the accuracy of each may differ in relation to the number of loci examined, allelic diversity, incomplete sampling of all candidate parents and the presence of genotyping errors. Here, we examine how these factors affect the accuracy of three popular parentage inference methods (colony, famoz and an exclusion‐Bayes’ theorem approach by Christie (Molecular Ecology Resources, 2010a, 10, 115) to resolve true parent–offspring pairs using simulated data. Our findings demonstrate that accuracy increases with the number and diversity of loci. These were clearly the most important factors in obtaining accurate assignments explaining 75–90% of variance in overall accuracy across 60 simulated scenarios. Furthermore, the proportion of candidate parents sampled had a small but significant impact on the susceptibility of each method to either false‐positive or false‐negative assignments. Within the range of values simulated, colony outperformed FaMoz, which outperformed the exclusion‐Bayes’ theorem method. However, with 20 or more highly polymorphic loci, all methods could be applied with confidence. Our results show that for parentage inference in natural populations, careful consideration of the number and quality of markers will increase the accuracy of assignments and mitigate the effects of incomplete sampling of parental populations.


Behavioral Ecology and Sociobiology | 2008

Trade-offs associated with dietary specialization in corallivorous butterflyfishes (Chaetodontidae: Chaetodon )

Michael L. Berumen; Morgan S. Pratchett

Increasing dietary specialization is an inherently risky strategy because it increases a species’ vulnerability to resource depletion. However, risks associated with dietary specialization may be offset by increased performance when feeding on preferred prey. Although rarely demonstrated, highly specialized species are expected to outperform generalists when feeding on their preferred prey, whereas generalists are predicted to have more similar performance across a range of different prey. To test this theory, we compared the growth rates of two obligate coral-feeding butterflyfishes (Chaetodon trifascialis and Chaetodon plebeius) maintained on exclusive diets of preferred vs nonpreferred prey. In the field, C. trifascialis was the most specialized species, feeding almost exclusively on just one coral species, Acropora hyacinthus. C. plebeius meanwhile, was much less specialized, but fed predominantly on Pocillopora damicornis. During growth experiments, C. trifascialis grew fastest when feeding on A. hyacinthus and did not grow at all when feeding on less preferred prey (P. damicornis and Porites cylindrica). C. plebeius performed equally well on both A. hyacinthus and P. damicornis (its preferred prey), but performed poorly when feeding on P. cylindrica. Both butterflyfishes select coral species that maximize juvenile growth, but contrary to expectations, the more specialized species (C. trifascialis) did not outperform the generalist species (C. plebeius) when both consumed their preferred prey. Increased dietary specialization, therefore, appears to be a questionable strategy, as there was no evidence of any increased benefits to offset increases in susceptibility to disturbance.


The Journal of Experimental Biology | 2010

Crucial knowledge gaps in current understanding of climate change impacts on coral reef fishes

Shaun K. Wilson; Mehdi Adjeroud; David R. Bellwood; Michael L. Berumen; David J. Booth; Y. Marie Bozec; Pascale Chabanet; Alistair J. Cheal; Joshua E. Cinner; Martial Depczynski; David A. Feary; Monica Gagliano; Nicholas A. J. Graham; A. R. Halford; Benjamin S. Halpern; Alastair R. Harborne; Andrew S. Hoey; Sally J. Holbrook; Geoffrey P. Jones; M. Kulbiki; Yves Letourneur; T. L. de Loma; Tim R. McClanahan; Mark I. McCormick; Mark G. Meekan; Peter J. Mumby; Philip L. Munday; Marcus C. Öhman; Morgan S. Pratchett; Bernhard Riegl

SUMMARY Expert opinion was canvassed to identify crucial knowledge gaps in current understanding of climate change impacts on coral reef fishes. Scientists that had published three or more papers on the effects of climate and environmental factors on reef fishes were invited to submit five questions that, if addressed, would improve our understanding of climate change effects on coral reef fishes. Thirty-three scientists provided 155 questions, and 32 scientists scored these questions in terms of: (i) identifying a knowledge gap, (ii) achievability, (iii) applicability to a broad spectrum of species and reef habitats, and (iv) priority. Forty-two per cent of the questions related to habitat associations and community dynamics of fish, reflecting the established effects and immediate concern relating to climate-induced coral loss and habitat degradation. However, there were also questions on fish demographics, physiology, behaviour and management, all of which could be potentially affected by climate change. Irrespective of their individual expertise and background, scientists scored questions from different topics similarly, suggesting limited bias and recognition of a need for greater interdisciplinary and collaborative research. Presented here are the 53 highest-scoring unique questions. These questions should act as a guide for future research, providing a basis for better assessment and management of climate change impacts on coral reefs and associated fish communities.


Science | 2018

Spatial and temporal patterns of mass bleaching of corals in the Anthropocene

Terry P. Hughes; Kristen D. Anderson; Sean R. Connolly; Scott F. Heron; James T. Kerry; Janice M. Lough; Andrew Baird; Julia K. Baum; Michael L. Berumen; Tom C. L. Bridge; Danielle C. Claar; C. Mark Eakin; James P. Gilmour; Nicholas A. J. Graham; Hugo B. Harrison; Jean-Paul A. Hobbs; Andrew S. Hoey; Mia O. Hoogenboom; Ryan J. Lowe; Malcolm T. McCulloch; John M. Pandolfi; Morgan S. Pratchett; Verena Schoepf; Gergely Torda; Shaun K. Wilson

Not enough time for recovery Coral bleaching occurs when stressful conditions result in the expulsion of the algal partner from the coral. Before anthropogenic climate warming, such events were relatively rare, allowing for recovery of the reef between events. Hughes et al. looked at 100 reefs globally and found that the average interval between bleaching events is now less than half what it was before. Such narrow recovery windows do not allow for full recovery. Furthermore, warming events such as El Niño are warmer than previously, as are general ocean conditions. Such changes are likely to make it more and more difficult for reefs to recover between stressful events. Science, this issue p. 80 Coral reefs in the present day have less time than in earlier periods to recover from bleaching events. Tropical reef systems are transitioning to a new era in which the interval between recurrent bouts of coral bleaching is too short for a full recovery of mature assemblages. We analyzed bleaching records at 100 globally distributed reef locations from 1980 to 2016. The median return time between pairs of severe bleaching events has diminished steadily since 1980 and is now only 6 years. As global warming has progressed, tropical sea surface temperatures are warmer now during current La Niña conditions than they were during El Niño events three decades ago. Consequently, as we transition to the Anthropocene, coral bleaching is occurring more frequently in all El Niño–Southern Oscillation phases, increasing the likelihood of annual bleaching in the coming decades.


Coral Reefs | 2008

Habitat associations of juvenile versus adult butterflyfishes

Morgan S. Pratchett; Michael L. Berumen; Michael J. Marnane; J. V. Eagle; Deborah Pratchett

Many coral reef fishes exhibit distinct ontogenetic shifts in habitat use while some species settle directly in adult habitats, but there is not any general explanation to account for these differences in settlement strategies among coral reef fishes. This study compared distribution patterns and habitat associations of juvenile (young of the year) butterflyfishes to those of adult conspecifics. Three species, Chaetodon auriga, Chaetodon melannotus, and Chaetodon vagabundus, all of which have limited reliance on coral for food, exhibited marked differences in habitat association of juvenile versus adult individuals. Juveniles of these species were consistently found in shallow-water habitats, whereas adult conspecifics were widely distributed throughout a range of habitats. Juveniles of seven other species (Chaetodon aureofasciatus, Chaetodon baronessa, Chaetodon citrinellus, Chaetodon lunulatus, Chaetodon plebeius, Chaetodon rainfordi, and Chaetodon trifascialis), all of which feed predominantly on live corals, settled directly into habitat occupied by adult conspecifics. Butterflyfishes with strong reliance on corals appear to be constrained to settle in habitats that provide access to essential prey resources, precluding their use of distinct juvenile habitats. More generalist butterflyfishes, however, appear to utilize distinct juvenile habitats and exhibit marked differences in the distribution of juveniles versus adults.

Collaboration


Dive into the Michael L. Berumen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon R. Thorrold

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roberto Arrigoni

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Serge Planes

PSL Research University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Glenn R. Almany

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jessica Bouwmeester

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Tane H. Sinclair-Taylor

King Abdullah University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge