Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael L. Dustin is active.

Publication


Featured researches published by Michael L. Dustin.


Nature Neuroscience | 2005

ATP mediates rapid microglial response to local brain injury in vivo.

Dimitrios Davalos; Jaime Grutzendler; Guang Yang; Jiyun V. Kim; Yi Zuo; Steffen Jung; Dan R. Littman; Michael L. Dustin; Wen-Biao Gan

Parenchymal microglia are the principal immune cells of the brain. Time-lapse two-photon imaging of GFP-labeled microglia demonstrates that the fine termini of microglial processes are highly dynamic in the intact mouse cortex. Upon traumatic brain injury, microglial processes rapidly and autonomously converge on the site of injury without cell body movement, establishing a potential barrier between the healthy and injured tissue. This rapid chemotactic response can be mimicked by local injection of ATP and can be inhibited by the ATP-hydrolyzing enzyme apyrase or by blockers of G protein–coupled purinergic receptors and connexin channels, which are highly expressed in astrocytes. The baseline motility of microglial processes is also reduced significantly in the presence of apyrase and connexin channel inhibitors. Thus, extracellular ATP regulates microglial branch dynamics in the intact brain, and its release from the damaged tissue and surrounding astrocytes mediates a rapid microglial response towards injury.


Cell | 1988

Primary structure of ICAM-1 demonstrates interaction between members of the immunoglobulin and integrin supergene families

Donald E. Staunton; Steven D. Marlin; Christian Stratowa; Michael L. Dustin; Timothy A. Springer

Intercellular adhesion molecule 1 (ICAM-1) is a 90 kd inducible surface glycoprotein that promotes adhesion in immunological and inflammatory reactions. ICAM-1 is a ligand of lymphocyte function-associated antigen-1 (LFA-1), an alpha beta complex that is a member of the integrin family of cell-cell and cell-matrix receptors. ICAM-1 is encoded by an inducible 3.3 kb mRNA. The amino acid sequence specifies an integral membrane protein with an extracellular domain of 453 residues containing five immunoglobulin-like domains. Highest homology is found with neural cell adhesion molecule (NCAM) and myelin-associated glycoprotein (MAG), which also contain five Ig-like domains. NCAM and MAG are nervous system adhesion molecules, but unlike ICAM-1, NCAM is homophilic. The ICAM-1 and LFA-1 interaction is heterophilic and unusual in that it is between members of the immunoglobulin and intergrin families. Unlike other integrin ligands, ICAM-1 does not contain an RGD sequence.


Nature Immunology | 2004

Visualizing dendritic cell networks in vivo.

Randall L Lindquist; Guy Shakhar; Diana Dudziak; Hedda Wardemann; Thomas R. Eisenreich; Michael L. Dustin; Michel C. Nussenzweig

In the steady state, dendritic cells (DCs) in the lymph node induce T cell tolerance to self antigens. Innate signals trigger the maturation of tissue DCs, which migrate into lymph nodes and activate T cells. To examine DCs in vivo, we produced transgenic mice whose DCs expressed enhanced yellow fluorescent protein. Two-photon microscopy of lymph nodes in live mice showed that most of the steady-state DCs were enmeshed in an extensive network and remained in place while actively probing adjacent T cells with their processes. Mature DCs were more motile than steady-state DCs and were rapidly dispersed and integrated into the sessile network, facilitating their interaction with migrating T cells.


Cell | 1998

A Novel Adaptor Protein Orchestrates Receptor Patterning and Cytoskeletal Polarity in T-Cell Contacts

Michael L. Dustin; Michael W. Olszowy; Amy D. Holdorf; Jun Li; Shannon K. Bromley; Naishadh Desai; Patricia Widder; Frederick Rosenberger; P. Anton van der Merwe; Paul M. Allen; Andrey S. Shaw

Recognition of antigen by T cells requires the formation of a specialized junction between the T cell and the antigen-presenting cell. This junction is generated by the recruitment and the exclusion of specific proteins from the contact area. The mechanisms that regulate these events are unknown. Here we demonstrate that ligand engagement of the adhesion molecule, CD2, initiates a process of protein segregation, CD2 clustering, and cytoskeletal polarization. Although protein segregation was not dependent on the cytoplasmic domain of CD2, CD2 clustering and cytoskeletal polarization required an interaction of the CD2 cytoplasmic domain with a novel SH3-containing protein. This novel protein, called CD2AP, is likely to facilitate receptor patterning in the contact area by linking specific adhesion receptors to the cytoskeleton.


Cell | 1990

The arrangement of the immunoglobulin-like domains of ICAM-1 and the binding sites for LFA-1 and rhinovirus

Donald E. Staunton; Michael L. Dustin; Harold P. Erickson; Timothy A. Springer

Intercellular adhesion molecule 1 (ICAM-1, CD54) binds to the integrin LFA-1 (CD11a/CD18), promoting cell adhesion in immune and inflammatory reactions. ICAM-1 is also subverted as a receptor by the major group of rhinoviruses. Electron micrographs show that ICAM-1 is a bent rod, 18.7 nm long, suggesting a model in which the five immunoglobulin-like domains are oriented head to tail at a small angle to the rod axis. ICAM-1 sequences important to binding LFA-1, rhinovirus, and four monoclonal antibodies were identified through the characterization of chimeric ICAM-1 molecules and mutants. The amino-terminal two immunoglobulin-like domains of ICAM-1 appear to interact conformationally. Domain 1 of ICAM-1 contains the primary site of contact for both LFA-1 and rhinovirus; the presence of domains 3-5 markedly affects the accessibility of the binding site for rhinovirus and less so for LFA-1. The binding sites appear to be distinct but overlapping; rhinovirus binding also differs from LFA-1 binding in its lack of divalent cation dependence. Our analysis suggests that rhinoviruses mimic LFA-1 in binding to the most membrane-distal, and thus most accessible, site of ICAM-1.


Nature Immunology | 2000

The immunological synapse and the actin cytoskeleton: molecular hardware for T cell signaling

Michael L. Dustin; John A. Cooper

The actin cytoskeleton seems to play two critical roles in the activation of T cells. One of these roles is T cell shape development and movement, including formation of the immunological synapse. The other is the formation of a scaffold for signaling components. This review focuses on the recent convergence of cell biology and immunology studies to explain the role of the actin cytoskeleton in creating the molecular basis for immunological synapse formation and T cell signaling.


Nature Immunology | 2005

Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76.

Tadashi Yokosuka; Kumiko Sakata-Sogawa; Wakana Kobayashi; Michio Hiroshima; Akiko Hashimoto-Tane; Makio Tokunaga; Michael L. Dustin; Takashi Saito

T cell receptor (TCR) activation and signaling precede immunological synapse formation and are sustained for hours after initiation. However, the precise physical sites of the initial and sustained TCR signaling are not definitively known. We report here that T cell activation was initiated and sustained in TCR-containing microclusters generated at the initial contact sites and the periphery of the mature immunological synapse. Microclusters containing TCRs, the tyrosine kinase Zap70 and the adaptor molecule SLP-76 were continuously generated at the periphery. TCR microclusters migrated toward the central supramolecular cluster, whereas Zap70 and SLP-76 dissociated from these microclusters before the microclusters coalesced with the TCR-rich central supramolecular cluster. Tyrosine phosphorylation and calcium influx were induced as microclusters formed at the initial contact sites. Inhibition of signaling prevented recruitment of Zap70 into the microclusters. These results indicated that TCR-rich microclusters initiate and sustain TCR signaling.


Advances in Immunology | 1989

The leukocyte integrins.

Takashi K. Kishimoto; Richard S. Larson; Angel L. Corbí; Michael L. Dustin; Donald E. Staunton; Timothy A. Springer

Publisher Summary This chapter focuses on the molecular biology of the leukocyte integrins, LFA-1, Mac-1, and p150,95, and on their role in mediating inflammation. Three recent developments have underscored the importance of the leukocyte integrins as adhesion receptors of the immune system: The recognition that the leukocyte integrins are evolutionarily related to other integrins; Identification of intercellular adhesion molecule-1 (ICAM-l), a ligand for LFA-1, which is induced during inflammation, and may regulate leukocyte migration and localization; and discovery and characterization of immunodeficiency patients who are genetically deficient in their expression of the leukocyte integrins. Researchers have found a class of immune-deficient patients who suffer from recurrent, life-threatening bacterial and fungal infections, and who have neutrophils deficient in chemotaxis and phagocytosis. Infected, necrotic lesions in these patients contain few leukocytes, despite the observation that these patients have chronic leukocytosis. The leukocyte integrins are α 1 β 1 heterodimers, in which the α subunit is noncovalently associated with the β subunit. The α subunits of LFA-1, Mac-1, and p150, 95 are 1,80,000, 1,70,000, and 1,50,000 Da, respectively. The α subunits have been shown to be distinct by MAb reactivity, antigen-preclearing studies, and tryptic peptide mapping. In contrast, the β subunit, M r = 95,000, has been shown to be identical in all three proteins by the same criteria. There is also substantial evidence that other ligands for LFA-1, Mac-1, and p150, 95 exist. Rational strategies must be designed to identify these ligands and to assess their contributions in different phases of the immune response. Multiple ligands may provide quite distinct signals and positional information to leukocytes.


Cell | 2010

Germinal Center Dynamics Revealed by Multiphoton Microscopy with a Photoactivatable Fluorescent Reporter

Gabriel D. Victora; Tanja A. Schwickert; David R. Fooksman; Alice O. Kamphorst; Michael Meyer-Hermann; Michael L. Dustin; Michel C. Nussenzweig

The germinal center (GC) reaction produces high-affinity antibodies by random mutation and selective clonal expansion of B cells with high-affinity receptors. The mechanism by which B cells are selected remains unclear, as does the role of the two anatomically defined areas of the GC, light zone (LZ) and dark zone (DZ). We combined a transgenic photoactivatable fluorescent protein tracer with multiphoton laser-scanning microscopy and flow cytometry to examine anatomically defined LZ and DZ B cells and GC selection. We find that B cell division is restricted to the DZ, with a net vector of B cell movement from the DZ to the LZ. The decision to return to the DZ and undergo clonal expansion is controlled by T helper cells in the GC LZ, which discern between LZ B cells based on the amount of antigen captured and presented. Thus, T cell help, and not direct competition for antigen, is the limiting factor in GC selection.


Nature Immunology | 2004

Calcineurin imposes T cell unresponsiveness through targeted proteolysis of signaling proteins

Vigo Heissmeyer; Fernando Macian; Sin-Hyeog Im; Rajat Varma; Stefan Feske; K. Venuprasad; Hua Gu; Yun Cai Liu; Michael L. Dustin; Anjana Rao

Sustained calcium signaling induces a state of anergy or antigen unresponsiveness in T cells, mediated through calcineurin and the transcription factor NFAT. We show here that Ca2+-induced anergy is a multistep program that is implemented at least partly through proteolytic degradation of specific signaling proteins. Calcineurin increased mRNA and protein of the E3 ubiquitin ligases Itch, Cbl-b and GRAIL and induced expression of Tsg101, the ubiquitin-binding component of the ESCRT-1 endosomal sorting complex. Subsequent stimulation or homotypic cell adhesion promoted membrane translocation of Itch and the related protein Nedd4, resulting in degradation of two key signaling proteins, PKC-θ and PLC-γ1. T cells from Itch- and Cbl-b–deficient mice were resistant to anergy induction. Anergic T cells showed impaired calcium mobilization after TCR triggering and were unable to maintain a mature immunological synapse, instead showing late disorganization of the outer ring containing lymphocyte function–associated antigen 1. Our results define a complex molecular program that links gene transcription induced by calcium and calcineurin to a paradoxical impairment of signal transduction in anergic T cells.

Collaboration


Dive into the Michael L. Dustin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sudha Kumari

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Andrey S. Shaw

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge