Michael L. Ginger
Lancaster University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael L. Ginger.
Nature | 2006
Richard Broadhead; Helen R. Dawe; Helen Farr; Samantha Griffiths; Sarah R. Hart; Neil Portman; Michael K. Shaw; Michael L. Ginger; Simon J. Gaskell; Paul G. McKean; Keith Gull
The 9 + 2 microtubule axoneme of flagella and cilia represents one of the most iconic structures built by eukaryotic cells and organisms. Both unity and diversity are present among cilia and flagella on the evolutionary as well as the developmental scale. Some cilia are motile, whereas others function as sensory organelles and can variously possess 9 + 2 and 9 + 0 axonemes and other associated structures. How such unity and diversity are reflected in molecular repertoires is unclear. The flagellated protozoan parasite Trypanosoma brucei is endemic in sub-Saharan Africa, causing devastating disease in humans and other animals. There is little hope of a vaccine for African sleeping sickness and a desperate need for modern drug therapies. Here we present a detailed proteomic analysis of the trypanosome flagellum. RNA interference (RNAi)-based interrogation of this proteome provides functional insights into human ciliary diseases and establishes that flagellar function is essential to the bloodstream-form trypanosome. We show that RNAi-mediated ablation of various proteins identified in the trypanosome flagellar proteome leads to a rapid and marked failure of cytokinesis in bloodstream-form (but not procyclic insect-form) trypanosomes, suggesting that impairment of flagellar function may provide a method of disease control. A postgenomic meta-analysis, comparing the evolutionarily ancient trypanosome with other eukaryotes including humans, identifies numerous trypanosome-specific flagellar proteins, suggesting new avenues for selective intervention.
Cell | 2010
Lillian K. Fritz-Laylin; Simon Prochnik; Michael L. Ginger; Joel B. Dacks; Meredith L. Carpenter; Mark C. Field; Alan Kuo; Alexander R. Paredez; Jarrod Chapman; Jonathan K. Pham; Shengqiang Shu; Rochak Neupane; Michael J. Cipriano; Joel Mancuso; Hank Tu; Asaf Salamov; Erika Lindquist; Harris Shapiro; Susan Lucas; Igor V. Grigoriev; W. Zacheus Cande; Chandler Fulton; Daniel S. Rokhsar; Scott C. Dawson
Genome sequences of diverse free-living protists are essential for understanding eukaryotic evolution and molecular and cell biology. The free-living amoeboflagellate Naegleria gruberi belongs to a varied and ubiquitous protist clade (Heterolobosea) that diverged from other eukaryotic lineages over a billion years ago. Analysis of the 15,727 protein-coding genes encoded by Naeglerias 41 Mb nuclear genome indicates a capacity for both aerobic respiration and anaerobic metabolism with concomitant hydrogen production, with fundamental implications for the evolution of organelle metabolism. The Naegleria genome facilitates substantially broader phylogenomic comparisons of free-living eukaryotes than previously possible, allowing us to identify thousands of genes likely present in the pan-eukaryotic ancestor, with 40% likely eukaryotic inventions. Moreover, we construct a comprehensive catalog of amoeboid-motility genes. The Naegleria genome, analyzed in the context of other protists, reveals a remarkably complex ancestral eukaryote with a rich repertoire of cytoskeletal, sexual, signaling, and metabolic modules.
International Journal for Parasitology | 2003
J. D. Barry; Michael L. Ginger; Peter Burton; Richard McCulloch
Contingency genes are common in pathogenic microbes and enable, through pre-emptive mutational events, rapid, clonal switches in phenotype that are conducive to survival and proliferation in hosts. Antigenic variation, which is a highly successful survival strategy employed by eubacterial and eukaryotic pathogens, involves large repertoires of distinct contingency genes that are expressed differentially, enabling evasion of host acquired immunity. Most, but not all, antigenic variation systems make extensive use of subtelomeres. Study of model systems has shown that subtelomeres have unusual properties, including reversible silencing of genes mediated by proteins binding to the telomere, and engagement in ectopic recombination with other subtelomeres. There is a general theory that subtelomeric location confers a capacity for gene diversification through such recombination, although experimental evidence is that there is no increased mitotic recombination at such loci and that sequence homogenisation occurs. Possible benefits of subtelomeric location for pathogen contingency systems are reversible gene silencing, which could contribute to systems for gene switching and mutually exclusive expression, and ectopic recombination, leading to gene family diversification. We examine, in several antigenic variation systems, what possible benefits apply.
Autophagy | 2011
Michael Duszenko; Michael L. Ginger; Ana Brennand; Melisa Gualdrón-López; María I. Colombo; Graham H. Coombs; Isabelle Coppens; Bamini Jayabalasingham; Gordon Langsley; Solange L. de Castro; Rubem F. S. Menna-Barreto; Jeremy C. Mottram; Miguel Navarro; Daniel J. Rigden; Patricia S. Romano; Veronika Stoka; Boris Turk; Paul A. M. Michels
Autophagy is the degradative process by which eukaryotic cells digest their own components using acid hydrolases within the lysosome. Originally thought to function almost exclusively in providing starving cells with nutrients taken from their own cellular constituents, autophagy is in fact involved in numerous cellular events including differentiation, turnover of macromolecules and organelles, and defense against parasitic invaders. During the last 10-20 years, molecular components of the autophagic machinery have been discovered, revealing a complex interactome of proteins and lipids, which, in a concerted way, induce membrane formation to engulf cellular material and target it for lysosomal degradation. Here, our emphasis is autophagy in protists. We discuss experimental and genomic data indicating that the canonical autophagy machinery characterized in animals and fungi appeared prior to the radiation of major eukaryotic lineages. Moreover, we describe how comparative bioinformatics revealed that this canonical machinery has been subject to moderation, outright loss or elaboration on multiple occasions in protist lineages, most probably as a consequence of diverse lifestyle adaptations. We also review experimental studies illustrating how several pathogenic protists either utilize autophagy mechanisms or manipulate host-cell autophagy in order to establish or maintain infection within a host. The essentiality of autophagy for the pathogenicity of many parasites, and the unique features of some of the autophagy-related proteins involved, suggest possible new targets for drug discovery. Further studies of the molecular details of autophagy in protists will undoubtedly enhance our understanding of the diversity and complexity of this cellular phenomenon and the opportunities it offers as a drug target.
Critical Reviews in Biochemistry and Molecular Biology | 2013
V. Lila Koumandou; Bill Wickstead; Michael L. Ginger; Mark van der Giezen; Joel B. Dacks; Mark C. Field
Abstract Eukaryogenesis, the origin of the eukaryotic cell, represents one of the fundamental evolutionary transitions in the history of life on earth. This event, which is estimated to have occurred over one billion years ago, remains rather poorly understood. While some well-validated examples of fossil microbial eukaryotes for this time frame have been described, these can provide only basic morphology and the molecular machinery present in these organisms has remained unknown. Complete and partial genomic information has begun to fill this gap, and is being used to trace proteins and cellular traits to their roots and to provide unprecedented levels of resolution of structures, metabolic pathways and capabilities of organisms at these earliest points within the eukaryotic lineage. This is essentially allowing a molecular paleontology. What has emerged from these studies is spectacular cellular complexity prior to expansion of the eukaryotic lineages. Multiple reconstructed cellular systems indicate a very sophisticated biology, which by implication arose following the initial eukaryogenesis event but prior to eukaryotic radiation and provides a challenge in terms of explaining how these early eukaryotes arose and in understanding how they lived. Here, we provide brief overviews of several cellular systems and the major emerging conclusions, together with predictions for subsequent directions in evolution leading to extant taxa. We also consider what these reconstructions suggest about the life styles and capabilities of these earliest eukaryotes and the period of evolution between the radiation of eukaryotes and the eukaryogenesis event itself.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Andrew P. Jackson; Andrew Berry; Martin Aslett; Harriet C. Allison; Peter Burton; Jana Vavrova-Anderson; Robert H. Brown; Hilary P. Browne; Nicola Corton; Heidi Hauser; John Gamble; Ruth Gilderthorp; Lucio Marcello; Jacqueline McQuillan; Thomas D. Otto; Michael A. Quail; Mandy Sanders; Andries J. van Tonder; Michael L. Ginger; Mark C. Field; J. David Barry; Christiane Hertz-Fowler; Matthew Berriman
Antigenic variation enables pathogens to avoid the host immune response by continual switching of surface proteins. The protozoan blood parasite Trypanosoma brucei causes human African trypanosomiasis (“sleeping sickness”) across sub-Saharan Africa and is a model system for antigenic variation, surviving by periodically replacing a monolayer of variant surface glycoproteins (VSG) that covers its cell surface. We compared the genome of Trypanosoma brucei with two closely related parasites Trypanosoma congolense and Trypanosoma vivax, to reveal how the variant antigen repertoire has evolved and how it might affect contemporary antigenic diversity. We reconstruct VSG diversification showing that Trypanosoma congolense uses variant antigens derived from multiple ancestral VSG lineages, whereas in Trypanosoma brucei VSG have recent origins, and ancestral gene lineages have been repeatedly co-opted to novel functions. These historical differences are reflected in fundamental differences between species in the scale and mechanism of recombination. Using phylogenetic incompatibility as a metric for genetic exchange, we show that the frequency of recombination is comparable between Trypanosoma congolense and Trypanosoma brucei but is much lower in Trypanosoma vivax. Furthermore, in showing that the C-terminal domain of Trypanosoma brucei VSG plays a crucial role in facilitating exchange, we reveal substantial species differences in the mechanism of VSG diversification. Our results demonstrate how past VSG evolution indirectly determines the ability of contemporary parasites to generate novel variant antigens through recombination and suggest that the current model for antigenic variation in Trypanosoma brucei is only one means by which these parasites maintain chronic infections.
Molecular and Biochemical Parasitology | 2011
Ana Brennand; Melisa Gualdrón-López; Isabelle Coppens; Daniel J. Rigden; Michael L. Ginger; Paul A. M. Michels
Eukaryotic cells can degrade their own components, cytosolic proteins and organelles, using dedicated hydrolases contained within the acidic interior of their lysosomes. This degradative process, called autophagy, is used under starvation conditions to recycle redundant or less important macromolecules, facilitates metabolic re-modeling in response to environmental cues, and is also often important during cell differentiation. In this review, we discuss the role played by autophagy during the life cycles of the major parasitic protists. To provide context, we also provide an overview of the different forms of autophagy and the successive steps in the autophagic processes, including the proteins involved, as revealed in recent decades by studies using the model organism Saccharomyces cerevisiae, methylotrophic yeasts and mammalian cells. We describe for trypanosomatid parasites how autophagy plays a role in the differentiation from one life cycle stage to the next one and, in the case of the intracellular parasites, for virulence. For malarial parasites, although only a limited repertoire of canonical autophagy-related proteins can be detected, autophagy seems to play a role in the removal of redundant organelles important for cell invasion, when sporozoites develop into intracellular trophozoites inside the hepatocytes. The complete absence of a canonical autophagy pathway from the microaerophile Giardia lamblia is also discussed. Finally, the essential role of autophagy for differentiation and pathogenicity of some pathogenic protists suggests that the proteins involved in this process may represent new targets for drug development. Opportunities and strategies for drug design targeting autophagy proteins are discussed.
Current Biology | 2004
Laura Briggs; Jacqueline Davidge; Bill Wickstead; Michael L. Ginger; Keith Gull
We thank members of the Gull lab for help and discussion. This work was funded by grants and studentships from the Wellcome Trust, BBSRC, MRC and the Royal Society. We thank the various genome sequencing consortia for access to the datasets; a full list is given at http://users.path.ox.ac.uk/%126kgull/IFT/
Biochemical Journal | 2004
James W. A. Allen; Michael L. Ginger; Stuart J. Ferguson
The c-type cytochromes are characterized by the covalent attachment of haem to the polypeptide via thioether bonds formed from haem vinyl groups and, normally, the thiols of two cysteines in a CXXCH motif. Intriguingly, the mitochondrial cytochromes c and c1 from two euglenids and the Trypanosomatidae contain only a single cysteine within the haem-binding motif (XXXCH). There are three known distinct pathways by which c-type cytochromes are matured post-translationally in different organisms. The absence of genes encoding any of these c-type cytochrome biogenesis machineries is established here by analysis of six trypanosomatid genomes, and correlates with the presence of single-cysteine cytochromes c and c1. In contrast, we have identified a comprehensive catalogue of proteins required for a typical mitochondrial oxidative phosphorylation apparatus. Neither spontaneous nor catalysed maturation of the single-cysteine Trypanosoma brucei cytochrome c occurred in Escherichia coli. However, a CXXCH variant was matured by the E. coli cytochrome c maturation machinery, confirming the proposed requirement of the latter for two cysteines in the haem-binding motif and indicating that T. brucei cytochrome c can accommodate a second cysteine in a CXXCH motif. The single-cysteine haem attachment conserved in cytochromes c and c1 of the trypanosomatids is suggested to be related to their cytochrome c maturation machinery, and the environment in the mitochondrial intermembrane space. Our genomic and biochemical studies provide very persuasive evidence that the trypanosomatid mitochondrial cytochromes c are matured by a novel biogenesis system.
FEBS Journal | 2008
James W. A. Allen; Andrew P. Jackson; Daniel J. Rigden; Antony C. Willis; Stuart J. Ferguson; Michael L. Ginger
Mitochondrial cytochromes c and c1 are present in all eukaryotes that use oxygen as the terminal electron acceptor in the respiratory chain. Maturation of c‐type cytochromes requires covalent attachment of the heme cofactor to the protein, and there are at least five distinct biogenesis systems that catalyze this post‐translational modification in different organisms and organelles. In this study, we use biochemical data, comparative genomic and structural bioinformatics investigations to provide a holistic view of mitochondrial c‐type cytochrome biogenesis and its evolution. There are three pathways for mitochondrial c‐type cytochrome maturation, only one of which is present in prokaryotes. We analyze the evolutionary distribution of these biogenesis systems, which include the Ccm system (System I) and the enzyme heme lyase (System III). We conclude that heme lyase evolved once and, in many lineages, replaced the multicomponent Ccm system (present in the proto‐mitochondrial endosymbiont), probably as a consequence of lateral gene transfer. We find no evidence of a System III precursor in prokaryotes, and argue that System III is incompatible with multi‐heme cytochromes common to bacteria, but absent from eukaryotes. The evolution of the eukaryotic‐specific protein heme lyase is strikingly unusual, given that this protein provides a function (thioether bond formation) that is also ubiquitous in prokaryotes. The absence of any known c‐type cytochrome biogenesis system from the sequenced genomes of various trypanosome species indicates the presence of a third distinct mitochondrial pathway. Interestingly, this system attaches heme to mitochondrial cytochromes c that contain only one cysteine residue, rather than the usual two, within the heme‐binding motif. The isolation of single‐cysteine‐containing mitochondrial cytochromes c from free‐living kinetoplastids, Euglena and the marine flagellate Diplonema papillatum suggests that this unique form of heme attachment is restricted to, but conserved throughout, the protist phylum Euglenozoa.