Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael L. Mayo is active.

Publication


Featured researches published by Michael L. Mayo.


Environmental Science & Technology | 2017

Quantitative Adverse Outcome Pathways and Their Application to Predictive Toxicology

Rory B. Conolly; Gerald T. Ankley; WanYun Cheng; Michael L. Mayo; David H. Miller; Edward J. Perkins; Daniel L. Villeneuve; Karen H. Watanabe

A quantitative adverse outcome pathway (qAOP) consists of one or more biologically based, computational models describing key event relationships linking a molecular initiating event (MIE) to an adverse outcome. A qAOP provides quantitative, dose-response, and time-course predictions that can support regulatory decision-making. Herein we describe several facets of qAOPs, including (a) motivation for development, (b) technical considerations, (c) evaluation of confidence, and (d) potential applications. The qAOP used as an illustrative example for these points describes the linkage between inhibition of cytochrome P450 19A aromatase (the MIE) and population-level decreases in the fathead minnow (FHM; Pimephales promelas). The qAOP consists of three linked computational models for the following: (a) the hypothalamic-pitutitary-gonadal axis in female FHMs, where aromatase inhibition decreases the conversion of testosterone to 17β-estradiol (E2), thereby reducing E2-dependent vitellogenin (VTG; egg yolk protein precursor) synthesis, (b) VTG-dependent egg development and spawning (fecundity), and (c) fecundity-dependent population trajectory. While development of the example qAOP was based on experiments with FHMs exposed to the aromatase inhibitor fadrozole, we also show how a toxic equivalence (TEQ) calculation allows use of the qAOP to predict effects of another, untested aromatase inhibitor, iprodione. While qAOP development can be resource-intensive, the quantitative predictions obtained, and TEQ-based application to multiple chemicals, may be sufficient to justify the cost for some applications in regulatory decision-making.


pervasive computing and communications | 2011

Principles of genomic robustness inspire fault-tolerant WSN topologies: A network science based case study

Preetam Ghosh; Michael L. Mayo; Vijender Chaitankar; Tanwir Habib; Edward J. Perkins; Sajal K. Das

Wireless sensor networks (WSNs) are frameworks for modern pervasive computing infrastructures, and are often subject to operational difficulties, such as the inability to effectively mitigate signal noise or sensor failure. Natural systems, such as gene regulatory networks (GRNs), participate in similar information transport and are often subject to similar operational disruptions (noise, damage, etc.). Moreover, they self-adapt to maintain system function under adverse conditions. Using a PBN-type model valid in the operational and functional overlap between GRNs and WSNs, we study how attractors in the GRN-the target state of an evolving network-behave under selective gene or sensor failure. For “larger” networks, attractors are “robust”, in the sense that gene failures (or selective sensor failures in the WSN) conditionally increase their total number; the “distance” between initial states and their attractors (interpreted as the end-to-end packet delay) simultaneously decreases. Moreover, the number of attractors is conserved if the receiving sensor returns packets to the transmitting node; however, the distance to the attractors increases under similar conditions and sensor failures. Interpreting network state-transitions as packet transmission scenarios may allow for trade-offs between network topology and attractor robustness to be exploited to design novel fault-tolerant routing protocols, or other damage-mitigation strategies.


pervasive computing and communications | 2012

Performance of wireless sensor topologies inspired by E. coli genetic networks

Bhanu K. Kamapantula; Ahmed Abdelzaher; Preetam Ghosh; Michael L. Mayo; Edward J. Perkins; Sajal K. Das

Wireless Sensor Networks (WSNs) form a critical component in modern computing applications; given their size, ability to process and communicate information, and to sense stimuli, they are a promising part of The Internet of Things. However, they are also plagued by reliability and node failure problems. Here we address these problems by using E. coli Gene Regulatory Networks (GRNs) - believed to be robust against signaling disruptions, such as gene failures - to study the transmission properties of randomly-generated WSNs and transmission structures derived from these genetic networks. Selection of sink nodes is crucial to the performance of these networks; here we introduce two sink-node selection techniques: a Motif-based, and a Highest Degree-based approach. Using NS-2 simulations, the performance of both networks is evaluated under varying channel loss models. Successful packet receipts are compared among these networks, which are shown to be higher using GRNs for the communication structure, rather than randomly generated WSNs. This work paves the way for future development of fault-tolerant and robust WSN deployment and routing algorithms.


ambient intelligence | 2014

Leveraging the robustness of genetic networks: a case study on bio-inspired wireless sensor network topologies

Bhanu K. Kamapantula; Ahmed Abdelzaher; Preetam Ghosh; Michael L. Mayo; Edward J. Perkins; Sajal K. Das

Wireless sensor networks (WSNs) form a critical component in modern computing applications; given their size, ability to process and communicate information, and to sense stimuli, they are a promising part of the Internet of Things. However, they are also plagued by reliability and node failure problems. Here we address these problems by using the Gene Regulatory Networks (GRNs) of the organism Escherichia coli—believed to be robust against signaling disruptions, such as gene failures—to study the transmission properties of randomly-generated WSNs and transmission structures derived from these genetic networks. Selection of sink nodes is crucial to the performance of these networks; here we introduce four sink-node selection techniques: two motif-based, an attractor based and a highest degree-based approach and perform comprehensive simulations to assess their performance. Specifically, we use NS-2 simulations to evaluate the packet transmission robustness properties of such GRN-derived communication structures as against typical randomly deployed sensor network topologies under varying channel loss models. Packet receipt rates are compared among these networks, which are shown to be higher using GRNs for the communication structure, rather than randomly generated WSNs. We also evaluate the performance of communication structures derived from existing biological network generation models to assess their applicability in providing robust communication. This work paves the way for future development of fault-tolerant and robust WSN deployment and routing algorithms based on the inherent signal transmission robustness properties of the gene regulatory network topologies.


Frontiers in Physiology | 2012

Motif Participation by Genes in E. coli Transcriptional Networks.

Michael L. Mayo; Ahmed Abdelzaher; Edward J. Perkins; Preetam Ghosh

Motifs are patterns of recurring connections among the genes of genetic networks that occur more frequently than would be expected from randomized networks with the same degree sequence. Although the abundance of certain three-node motifs, such as the feed-forward loop, is positively correlated with a networks’ ability to tolerate moderate disruptions to gene expression, little is known regarding the connectivity of individual genes participating in multiple motifs. Using the transcriptional network of the bacterium Escherichia coli, we investigate this feature by reconstructing the distribution of genes participating in feed-forward loop motifs from its largest connected network component. We contrast these motif participation distributions with those obtained from model networks built using the preferential attachment mechanism employed by many biological and man-made networks. We report that, although some of these model networks support a motif participation distribution that appears qualitatively similar to that obtained from the bacterium E. coli, the probability for a node to support a feed-forward loop motif may instead be strongly influenced by only a few master transcriptional regulators within the network. From these analyses we conclude that such master regulators may be a crucial ingredient to describe coupling among feed-forward loop motifs in transcriptional regulatory networks.


PLOS ONE | 2016

Predicting Fecundity of Fathead Minnows (Pimephales promelas) Exposed to Endocrine-Disrupting Chemicals Using a MATLAB®-Based Model of Oocyte Growth Dynamics

Karen H. Watanabe; Michael L. Mayo; Kathleen M. Jensen; Daniel L. Villeneuve; Gerald T. Ankley; Edward J. Perkins

Fish spawning is often used as an integrated measure of reproductive toxicity, and an indicator of aquatic ecosystem health in the context of forecasting potential population-level effects considered important for ecological risk assessment. Consequently, there is a need for flexible, widely-applicable, biologically-based models that can predict changes in fecundity in response to chemical exposures, based on readily measured biochemical endpoints, such as plasma vitellogenin (VTG) concentrations, as input parameters. Herein we describe a MATLAB® version of an oocyte growth dynamics model for fathead minnows (Pimephales promelas) with a graphical user interface based upon a previously published model developed with MCSim software and evaluated with data from fathead minnows exposed to an androgenic chemical, 17β-trenbolone. We extended the evaluation of our new model to include six chemicals that inhibit enzymes involved in steroid biosynthesis: fadrozole, ketoconazole, propiconazole, prochloraz, fenarimol, and trilostane. In addition, for unexposed fathead minnows from group spawning design studies, and those exposed to the six chemicals, we evaluated whether the model is capable of predicting the average number of eggs per spawn and the average number of spawns per female, which was not evaluated previously. The new model is significantly improved in terms of ease of use, platform independence, and utility for providing output in a format that can be used as input into a population dynamics model. Model-predicted minimum and maximum cumulative fecundity over time encompassed the observed data for fadrozole and most propiconazole, prochloraz, fenarimol and trilostane treatments, but did not consistently replicate results from ketoconazole treatments. For average fecundity (eggs•female-1•day-1), eggs per spawn, and the number of spawns per female, the range of model-predicted values generally encompassed the experimentally observed values. Overall, we found that the model predicts reproduction metrics robustly and its predictions capture the variability in the experimentally observed data.


Integrated Environmental Assessment and Management | 2016

Limitations of toxicity characterization in life cycle assessment – can adverse outcome pathways provide a new foundation?

Kurt A. Gust; Zachary A. Collier; Michael L. Mayo; Jacob K. Stanley; Ping Gong; Mark A. Chappell

Life cycle assessment (LCA) has considerable merit for holistic evaluation of product planning, development, production, and disposal, with the inherent benefit of providing a forecast of potential health and environmental impacts. However, a technical review of current life cycle impact assessment (LCIA) methods revealed limitations within the biological effects assessment protocols, including: simplistic assessment approaches and models; an inability to integrate emerging types of toxicity data; a reliance on linear impact assessment models; a lack of methods to mitigate uncertainty; and no explicit consideration of effects in species of concern. The purpose of the current study is to demonstrate that a new concept in toxicological and regulatory assessment, the adverse outcome pathway (AOP), has many useful attributes of potential use to ameliorate many of these problems, to expand data utility and model robustness, and to enable more accurate and defensible biological effects assessments within LCIA. Background, context, and examples have been provided to demonstrate these potential benefits. We additionally propose that these benefits can be most effectively realized through development of quantitative AOPs (qAOPs) crafted to meet the needs of the LCIA framework. As a means to stimulate qAOP research and development in support of LCIA, we propose 3 conceptual classes of qAOP, each with unique inherent attributes for supporting LCIA: 1) mechanistic, including computational toxicology models; 2) probabilistic, including Bayesian networks and supervised machine learning models; and 3) weight of evidence, including models built using decision-analytic methods. Overall, we have highlighted a number of potential applications of qAOPs that can refine and add value to LCIA. As the AOP concept and support framework matures, we see the potential for qAOPs to serve a foundational role for next-generation effects characterization within LCIA. Integr Environ Assess Manag 2016;12:580-590. Published 2015. This article is a US Government work and is in the public domain in the USA.


Science of The Total Environment | 2014

Uncertainty in multi-media fate and transport models: a case study for TNT life cycle assessment.

Michael L. Mayo; Zachary A. Collier; Vu Hoang; Mark A. Chappell

Life cycle assessment (LCA) is an evaluation method used by decision-makers to help assess the relative environmental impacts of various industrial processes. Despite that many LCA methods remain sensitive to uncertain input data, which can reduce the utility of their results, uncertainty arising from constituent LCA models remains poorly understood. Here, we begin to address this problem by evaluating the extent to which parameter-value uncertainty affects the SimpleBox 2.0 fate and transport model, which serves as a backbone for many LCA ecotoxicological impact categories. Two Monte Carlo type sampling methods were used to evaluate dispersion in steady-state concentration values for three chemicals involved in grenade production: toluene, 2,4-dinitrotoluene (2,4-DNT), and 2,4,6-trinitrotoluene (TNT). Parameters were first sampled stochastically one-at-a-time, then by randomly exploring a local patch of the parameter space. We confirmed that global temperatures contribute primarily to the overall variance of model results, which at most spanned approximately 8 decades in magnitude. These results are consistent with previous results obtained for the whole of the LCA method. LCA methods carry out calculations iteratively; a reduction in the error of a single component, such as the fate and transport model, may therefore improve its performance and utility as a decision-making aid.


BMC Systems Biology | 2017

Physiological fidelity or model parsimony? The relative performance of reverse-toxicokinetic modeling approaches

Michael A. Rowland; Edward J. Perkins; Michael L. Mayo

BackgroundPhysiologically-based toxicokinetic (PBTK) models are often developed to facilitate in vitro to in vivo extrapolation (IVIVE) using a top-down, compartmental approach, favoring architectural simplicity over physiological fidelity despite the lack of general guidelines relating model design to dynamical predictions. Here we explore the impact of design choice (high vs. low fidelity) on chemical distribution throughout an animal’s organ system.ResultsWe contrast transient dynamics and steady states of three previously proposed PBTK models of varying complexity in response to chemical exposure. The steady states for each model were determined analytically to predict exposure conditions from tissue measurements. Steady state whole-body concentrations differ between models, despite identical environmental conditions, which originates from varying levels of physiological fidelity captured by the models. These differences affect the relative predictive accuracy of the inverted models used in exposure reconstruction to link effects-based exposure data with whole-organism response thresholds obtained from in vitro assay measurements.ConclusionsOur results demonstrate how disregarding physiological fideltiy in favor of simpler models affects the internal dynamics and steady state estimates for chemical accumulation within tissues, which, in turn, poses significant challenges for the exposure reconstruction efforts that underlie many IVIVE methods. Developing standardized systems-level models for ecological organisms would not only ensure predictive consistency among future modeling studies, but also ensure pragmatic extrapolation of in vivo effects from in vitro data or modeling exposure-response relationships.


International Conference on Computational Social Networks | 2015

Social Influence Spectrum with Guarantees: Computing More in Less Time

Thang N. Dinh; Hung T. Nguyen; Preetam Ghosh; Michael L. Mayo

Given a social network, the Influence maximization (InfMax) problem seeks a seed set of k people that maximize the expected influence for a viral marketing campaign. However, a solution for a particular seed size k is often not enough to make informed choice regarding budget and cost-effectiveness.

Collaboration


Dive into the Michael L. Mayo's collaboration.

Top Co-Authors

Avatar

Preetam Ghosh

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Edward J. Perkins

Engineer Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

Ahmed Abdelzaher

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Bhanu K. Kamapantula

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Kevin R. Pilkiewicz

Engineer Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

Thang N. Dinh

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Kurt A. Gust

Engineer Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

Sajal K. Das

Missouri University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hung T. Nguyen

Virginia Commonwealth University

View shared research outputs
Researchain Logo
Decentralizing Knowledge