Michael L. Mimmack
Babraham Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael L. Mimmack.
The Lancet | 2003
Dmitri Tkachev; Michael L. Mimmack; Margaret Ryan; Matthew T. Wayland; Thomas B. Freeman; Peter B. Jones; Michael Starkey; Maree J. Webster; Robert H. Yolken; Sabine Bahn
BACKGROUND Results of array studies have suggested abnormalities in expression of lipid and myelin-related genes in schizophrenia. Here, we investigated oligodendrocyte-specific and myelination-associated gene expression in schizophrenia and bipolar affective disorder. METHODS We used samples from the Stanley brain collection, consisting of 15 schizophrenia, 15 bipolar affective disorder, and 15 control brains. Indexing-based differential display PCR was done to screen for differences in gene expression in schizophrenia patients versus controls. Results were cross-validated with quantitative PCR, which was also used to investigate expression profiles of 16 other oligodendrocyte and myelin genes in schizophrenia and bipolar disorder. These genes were further investigated with an ongoing microarray analysis. FINDINGS Results of differential display and quantitative PCR analysis showed a reduction of key oligodendrocyte-related and myelin-related genes in schizophrenia and bipolar patients; expression changes for both disorders showed a high degree of overlap. Microarray results of the same genes investigated by quantitative PCR correlated well overall. INTERPRETATION Schizophrenia and bipolar brains showed downregulation of key oligodendrocyte and myelination genes, including transcription factors that regulate these genes, compared with control brains. These results lend support to and extend observations from other microarray investigations. Our study also showed similar expression changes to the schizophrenia group in bipolar brains, which thus lends support to the notion that the disorders share common causative and pathophysiological pathways.
Molecular Psychiatry | 2004
Sudhakaran Prabakaran; J.E. Swatton; Margaret Ryan; S. J. Huffaker; Jeffrey T.-J. Huang; Julian L. Griffin; Matthew T. Wayland; Thomas B. Freeman; F. Dudbridge; Kathryn S. Lilley; Natasha A. Karp; Svenja V. Hester; Dmitri Tkachev; Michael L. Mimmack; Robert H. Yolken; Maree J. Webster; E F Torrey; Sabine Bahn
The etiology and pathophysiology of schizophrenia remain unknown. A parallel transcriptomics, proteomics and metabolomics approach was employed on human brain tissue to explore the molecular disease signatures. Almost half the altered proteins identified by proteomics were associated with mitochondrial function and oxidative stress responses. This was mirrored by transcriptional and metabolite perturbations. Cluster analysis of transcriptional alterations showed that genes related to energy metabolism and oxidative stress differentiated almost 90% of schizophrenia patients from controls, while confounding drug effects could be ruled out. We propose that oxidative stress and the ensuing cellular adaptations are linked to the schizophrenia disease process and hope that this new disease concept may advance the approach to treatment, diagnosis and disease prevention of schizophrenia and related syndromes.
The Lancet | 2002
Sabine Bahn; Michael L. Mimmack; Margaret Ryan; Maeve A. Caldwell; Eric Jauniaux; Michael Starkey; Clive N. Svendsen; Piers C. Emson
BACKGROUND Identification of genes and characterisation of their function is an essential step towards understanding complex pathophysiological abnormalities in Downs syndrome. We did a study to investigate abnormalities in gene expression in human neuronal stem cells and progenitor cells from Downs syndrome and control post-mortem human fetal tissue. METHODS Indexing-based differential display PCR was done on neuronal precursor cells derived from the cortex of a fetus with Downs syndrome, and findings were compared with those of two control samples. Findings were validated against neurosphere preparations from three independent Downs syndrome fetuses and five independent controls by real-time quantitative PCR. FINDINGS Results of differential display PCR analysis showed that SCG10--a neuron--specific growth-associated protein regulated by the neuron-restrictive silencer factor REST-was almost undetectable in the Downs syndrome sample. This finding was validated by real-time PCR. We also found that other genes regulated by the REST transcription factor were selectively repressed, whereas non-REST-regulated genes with similar functions were unaffected. Changes in expression of several key developmental genes in the Downs syndrome stem-cell and progenitor-cell pool correlated with striking changes in neuron morphology after differentiation. INTERPRETATION Our findings suggest a link between dysregulation of the REST transcription factor and some of the neurological deficits seen in Downs syndrome. Experimental REST downregulation has been shown to trigger apoptosis, which could account for the striking and selective loss of neurons in the differentiated Downs syndrome cell preparations.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Michael L. Mimmack; Margaret Ryan; Hajime Baba; Juani Navarro-Ruiz; Shuji Iritani; Richard L.M. Faull; Peter J. McKenna; Peter B. Jones; Heii Arai; Michael Starkey; Piers C. Emson; Sabine Bahn
We screened a custom-made candidate gene cDNA array comprising 300 genes. Genes chosen have either been implicated in schizophrenia, make conceptual sense in the light of the current understanding of the disease, or are located on high-susceptibility chromosome locations. The array screen using prefrontal cortex tissue from 10 schizophrenia and 10 control brains revealed robust up-regulation of apolipoprotein L1 (apo L1) by 2.6-fold. The finding was cross-validated in a blinded quantitative PCR study using prefrontal cortex tissue from the Stanley Foundation brain collection, Bethesda, MD. This collection consists of 15 schizophrenia, 15 bipolar disorder, 15 major depression, and 15 control individuals, all 60 brains being well-matched on conventional parameters, with antipsychotic drug exposure in the schizophrenia and bipolar disorder groups. Significant up-regulation of apo L1 gene expression in schizophrenia was confirmed. Using quantitative PCR, expression profiles of other members of the apo L family (apo L2–L6) were investigated, showing that apo L2 and L4 were highly significantly up-regulated in schizophrenia. Results were then confirmed in an independent set of 20 schizophrenia and 20 control brains from Japan and New Zealand. Apo L proteins belong to the group of high density lipoproteins, with all six apo L genes located in close proximity to each other on chromosome 22q12, a confirmed high-susceptibility locus for schizophrenia and close to the region associated with velocardiofacial syndrome that includes symptoms of schizophrenia.
The International Journal of Neuropsychopharmacology | 2007
Dmitri Tkachev; Michael L. Mimmack; Stephen J. Huffaker; Margaret Ryan; Sabine Bahn
Recent studies have provided evidence for neuronal and oligodendrocyte-related abnormalities being associated with schizophrenia. However, the functional interplay and causal relationship between these two abnormalities is poorly understood. In this report, we provide data that identify myelin and fatty-acid biosynthesis dysfunction in schizophrenia based on post-mortem brain studies (prefrontal cortex) utilizing parallel metabolic and transcriptomics investigations. We detected a significant up-regulation of N-acetylaspartate (NAA) by HPLC analysis. Microarray and Q-PCR investigations revealed mRNA abnormalities for several enzymes involved in NAA metabolism. Additionally, glutamatergic neurotransmission components were also found to be affected. Our results suggest that, apart from the previously reported alterations in myelin-related protein synthesis, myelin synthesis itself may be directly affected in schizophrenia as indicated by changes in key enzymes involved in NAA metabolism. A decrease in NAA catabolism in oligodendrocytes would severely reduce acetate levels required to produce myelin lipids and may subsequently affect glutamatergic neurotransmission.
European Journal of Neuroscience | 2003
P Peele; I Salazar; Michael L. Mimmack; Eric B. Keverne; Peter A. Brennan
Mouse urine contains a complex mixture of chemosignals including a variety of small volatile molecules that are bound to major urinary proteins. In addition to signalling maleness, male urine also conveys information about individuality, which allows recently mated female mice to distinguish the urinary chemosignals of the mating male from those of an unfamiliar male. The highly polymorphic nature of the major urinary proteins makes them a likely candidate for conveying individuality information in the context of the pregnancy block effect. This was investigated by comparing the pregnancy‐blocking effectiveness of a high molecular weight urinary fraction, containing major urinary proteins, with that of a low molecular weight fraction containing volatile ligands. Not only was the high molecular weight fraction ineffective in blocking pregnancy, but it also appeared to be less important in signalling individuality than the low molecular fraction. The high molecular weight fraction was ineffective in inducing expression of the immediate early gene product egr‐1 in the accessory olfactory bulb. In contrast, the low molecular weight fraction induced egr‐1 expression in the mitral/tufted neurons in the anterior subregion of the accessory olfactory bulb, suggesting that they activate the V1R class of vomeronasal receptor neuron.
PLOS ONE | 2008
Laura W. Harris; Matthew T. Wayland; Martin Lan; Margaret Ryan; Thomas Giger; Helen E. Lockstone; Irene Wuethrich; Michael L. Mimmack; Lan Wang; Mark R. Kotter; Rachel M. Craddock; Sabine Bahn
BACKGROUND Previous studies of brain and peripheral tissues in schizophrenia patients have indicated impaired energy supply to the brain. A number of studies have also demonstrated dysfunction of the microvasculature in schizophrenia patients. Together these findings are consistent with a hypothesis of blood-brain barrier dysfunction in schizophrenia. In this study, we have investigated the cerebral vascular endothelium of schizophrenia patients at the level of transcriptomics. METHODOLOGY/PRINCIPAL FINDINGS We used laser capture microdissection to isolate both microvascular endothelial cells and neurons from post mortem brain tissue from schizophrenia patients and healthy controls. RNA was isolated from these cell populations, amplified, and analysed using two independent microarray platforms, Affymetrix HG133plus2.0 GeneChips and CodeLink Whole Human Genome arrays. In the first instance, we used the dataset to compare the neuronal and endothelial data, in order to demonstrate that the predicted differences between cell types could be detected using this methodology. We then compared neuronal and endothelial data separately between schizophrenic subjects and controls. Analysis of the endothelial samples showed differences in gene expression between schizophrenics and controls which were reproducible in a second microarray platform. Functional profiling revealed that these changes were primarily found in genes relating to inflammatory processes. CONCLUSIONS/SIGNIFICANCE This study provides preliminary evidence of molecular alterations of the cerebral microvasculature in schizophrenia patients, suggestive of a hypo-inflammatory state in this tissue type. Further investigation of the blood-brain barrier in schizophrenia is warranted.
Journal of Chromatography B | 2009
Jonathan Michael Haigh; Abid Hussain; Michael L. Mimmack; Christopher R. Lowe
This report describes a novel use of the four-component Ugi reaction to generate a solid-phase library suitable for the purification of immunoglobulins and their fragments by affinity chromatography. An aldehyde-functionalised Sepharose solid-support constituted one component in the four-component reaction, whereas the other three components (a carboxylic acid, a primary or secondary amine and an isonitrile) were varied in a combinatorial fashion to generate a tri-substituted peptoidal scaffold structure which provides a degree of rigidity and functionality suitable for rational investigation of immunoglobulin binding. The Ugi ligand library was initially screened chromatographically against whole human IgG and its fragments (Fc and Fab) to yield a Fab-specific lead ligand based on its ability to bind Fab differentially over Fc. Preparative chromatography of IgG from human serum showed 100% of IgG was adsorbed from the 20mg/ml crude stock and subsequently eluted with a purity of 81.0% as determined by SDS-PAGE analysis under non-optimised conditions. High purity Fab and IgG isolation was achieved from both yeast and E. coli host cell proteins according to silver-stained SDS-PAGE lane densitometry. The ligand density and spacer-arm chemistry of the immobilised ligand was optimised to define an affinity adsorbent which binds 73.06 mg IgG/ml moist gel (dynamic binding capacity at 10% breakthrough) and a static binding capacity of 16.1+/-0.25mg Fab/ml moist resin displaying an affinity constant K(d)=(2.6+/-0.3)x10(-6)M. The lead candidate was modelled in silico and docked into a human Fab fragment (PDB: 1AQK) to suggest a putative binding interface to the constant CH(1)-CL Fab terminal through six defined hydrogen bond interactions together with putative hydrophobic interactions.
European Journal of Neuroscience | 2000
Kevin D. Broad; Michael L. Mimmack; Keith M. Kendrick
Patterns of neural activation during face recognition were investigated in sheep by quantifying altered c‐fos mRNA expression in situations where faces (sheep vs. human) can (faces upright) and cannot (faces inverted) be discriminated. Exposure to upright faces selectively increased expression significantly more in the right inferior temporal cortex than in the left, and active choice between upright faces additionally increased expression bilaterally in basal amygdala and hippocampus (CA1–4). Exposure to inverted faces did not lead to enhanced activation in the right inferior temporal cortex, amygdala or hippocampus but instead increased expression levels in the diagonal band of Broca, parietal and cingulate cortices. These results show that discrimination of upright faces in sheep preferentially engages the right temporal cortex, as it does in humans, and that performance of active choices between such faces may additionally involve the basal amygdala and hippocampus.
Journal of Biological Chemistry | 2016
Emily R Rowe; Michael L. Mimmack; Antonio Daniel Barbosa; Afreen Haider; Iona Isaac; Myriam M. Ouberai; Abdou Rachid Thiam; Satish Patel; Vladimir Saudek; Symeon Siniossoglou; David B. Savage
Perilipins (PLINs) play a key role in energy storage by orchestrating the activity of lipases on the surface of lipid droplets. Failure of this activity results in severe metabolic disease in humans. Unlike all other lipid droplet-associated proteins, PLINs localize almost exclusively to the phospholipid monolayer surrounding the droplet. To understand how they sense and associate with the unique topology of the droplet surface, we studied the localization of human PLINs in Saccharomyces cerevisiae, demonstrating that the targeting mechanism is highly conserved and that 11-mer repeat regions are sufficient for droplet targeting. Mutations designed to disrupt folding of this region into amphipathic helices (AHs) significantly decreased lipid droplet targeting in vivo and in vitro. Finally, we demonstrated a substantial increase in the helicity of this region in the presence of detergent micelles, which was prevented by an AH-disrupting missense mutation. We conclude that highly conserved 11-mer repeat regions of PLINs target lipid droplets by folding into AHs on the droplet surface, thus enabling PLINs to regulate the interface between the hydrophobic lipid core and its surrounding hydrophilic environment.